Skip to main content

Advertisement

Log in

Obesity, bone density relative to body weight and prevalent vertebral fracture at age 62 years: the Newcastle thousand families study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Obesity increases the likelihood of prevalent vertebral fracture (VF) in men and women at age 62 years. The higher absolute bone mineral density (BMD) observed in obese individuals is disproportionate to body weight, and this may partly explain the greater prevalence of VF in this group.

Introduction

Obesity is a global epidemic, and there remains uncertainty over the effect of obesity on skeletal health, particularly in the context of osteoporosis. The aim of this study was to investigate associations of body mass index (BMI) and obesity with BMD and prevalent VF in men and women aged 62 years.

Methods

Three hundred and forty-two men and women aged 62.5 ± 0.5 years from the Newcastle Thousand Families Study birth cohort underwent DXA evaluations of femoral neck and lumbar spine BMD and of the lateral spine for vertebral fracture assessment.

Results

The likelihood of prevalent VF was significantly increased in men when compared to women (OR = 2.7, p < 0.001, 95% Cl 1.7–4.4). As BMI increased in women, so did the likelihood of prevalent any-grade VF (OR = 1.09, p = 0.006, 95% CI 1.02–1.17). Compared to normal weight women, obese women were more likely to have at least one VF (OR = 2.65, p = 0.025, CI 1.13–6.20) and at least one grade 1 vertebral deformity (OR = 4.39, p = 0.005, CI 1.57–12.28). Obese men were more likely to have a grade 2 and/or grade 3 VF compared to men of normal weight (OR = 3.36, p = 0.032, CI 1.11–10.16). In men and women, BMI was negatively associated with femoral neck BMD/weight (R = − 0.65, R = − 0.66, p < 0.001) and lumbar spine BMD/weight (R = − 0.66, R − 0.60, p < 0.001).

Conclusions

Obesity appears to be a risk factor for prevalent VF, and although absolute BMD is higher in obese individuals, this does not appear commensurate to their increased body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Organization, W.H 2016. Obesity and overweight - factsheet. [Online]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/ Accessed in October 2017

  2. Barker C (2018) Obesity statistics. [Online]. Available from: https://researchbriefings.parliament.uk/ResearchBriefing/Summary/SN03336 Accessed in March 2018

  3. NIH Consensus Development Panel on Osteoporosis Prevention, D. and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795

    Article  Google Scholar 

  4. Ensrud KE, Schousboe JT (2011) Clinical practice. Vertebral fractures. N Engl J Med 364(17):1634–1642

    Article  CAS  Google Scholar 

  5. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  Google Scholar 

  6. Hind K, Gannon L, Brightmore A, Beck B (2015) Insights into relationships between body mass, composition and bone: findings in elite rugby players. J Clin Densitom 18(2):172–178

    Article  Google Scholar 

  7. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  CAS  Google Scholar 

  8. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18(12):1617–1624

    Article  CAS  Google Scholar 

  9. European Prospective Osteoporosis Study, G, Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW (2002) Incidence of vertebral fracture in europe: results from the European prospective osteoporosis study (EPOS). J Bone Miner Res 17(4):716–724

    Article  Google Scholar 

  10. Curtis EM, van der Velde R, Moon RJ, van den Bergh JP, Geusens P, de Vries F, van Staa TP, Cooper C, Harvey NC (2016) Epidemiology of fractures in the United Kingdom 1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone 87:19–26

    Article  Google Scholar 

  11. Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, Mannarino MR, Scarponi AM, Mannarino E (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab 28(1):88–93

    Article  Google Scholar 

  12. Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8(5):567–573

    Article  CAS  Google Scholar 

  13. Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, Dilsen G, Gennari C, Lopes Vaz A, Lyritis G et al (1995) Risk factors for hip fracture in European women: the MEDOS study. Mediterranean osteoporosis study. J Bone Miner Res 10(11):1802–1815

    Article  CAS  Google Scholar 

  14. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16(11):1330–1338

    Article  Google Scholar 

  15. Armstrong ME, Cairns BJ, Banks E, Green J, Reeves GK, Beral V (2012) Million women study, C. different effects of age, adiposity and physical activity on the risk of ankle, wrist and hip fractures in postmenopausal women. Bone 50(6):1394–1400

    Article  Google Scholar 

  16. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Glow I (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124(11):1043–1050

    Article  Google Scholar 

  17. Schousboe JT, Vokes T, Broy SB, Ferrar L, McKiernan F, Roux C, Binkley N (2008) Vertebral fracture assessment: the 2007 ISCD official positions. J Clin Densitom 11(1):92–108

    Article  Google Scholar 

  18. Ensrud KE, Blackwell TL, Fink HA, Zhang J, Cauley JA, Cawthon PM, Black DM, Bauer DC, Curtis JR, Orwoll ES, Barrett-Connor E, Kado DM, Marshall LM, Shikany JM, Schousboe JT (2016) Osteoporotic fractures in men research, G. what proportion of incident radiographic vertebral fractures in older men is clinically diagnosed and vice versa: a prospective study. J Bone Miner Res 31(8):1500–1503

    Article  Google Scholar 

  19. Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G (2012) Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int 23(1):67–74

    Article  CAS  Google Scholar 

  20. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2008) Combination of obesity with hyperglycemia is a risk factor for the presence of vertebral fractures in type 2 diabetic men. Calcif Tissue Int 83(5):324–331

    Article  CAS  Google Scholar 

  21. Pearce MS, Unwin NC, Parker L, Craft AW (2009) Cohort profile: the Newcastle thousand families 1947 birth cohort. Int J Epidemiol 38(4):932–937

    Article  Google Scholar 

  22. Organization, W.H WHO BMI classification. [Online]. 17/4/17]. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html Accessed in October 2017

  23. Hind K, Oldroyd B, Truscott JG (2010) In vivo precision of the GE lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. J Clin Densitom 13(4):413–417

    Article  Google Scholar 

  24. Diacinti D, Del Fiacco R, Pisani D, Todde F, Cattaruzza MS, Diacinti D, Arima S, Romagnoli E, Pepe J, Cipriani C, Minisola S (2012) Diagnostic performance of vertebral fracture assessment by the lunar iDXA scanner compared to conventional radiography. Calcif Tissue Int 91(5):335–342

    Article  CAS  Google Scholar 

  25. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3(3):281–290

    Article  CAS  Google Scholar 

  26. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  CAS  Google Scholar 

  27. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey EFRAX (2008) The assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397

    Article  CAS  Google Scholar 

  28. Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, Marcus R, San Martin J (2007) Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 18(1):69–76

    Article  CAS  Google Scholar 

  29. Cumming GP, Currie H, Morris E, Moncur R, Lee AJ (2015) The need to do better - are we still letting our patients down and at what cost? Post Reprod Health 21(2):56–62

    Article  Google Scholar 

  30. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24(4):737–743

    Article  Google Scholar 

  31. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33(4):522–532

    Article  CAS  Google Scholar 

  32. Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R (2010) Men with metabolic syndrome have lower bone mineral density but lower fracture risk--the MINOS study. J Bone Miner Res 25(6):1446–1454

    Article  Google Scholar 

  33. Hind K, Pearce M, Birrell F (2017) Total and visceral adiposity are associated with prevalent vertebral fracture in women but not men at age 62 years: the Newcastle thousand families study. J Bone Miner Res 32(5):1109–1115

    Article  CAS  Google Scholar 

  34. Scane AC, Francis RM, Sutcliffe AM, Francis MJ, Rawlings DJ, Chapple CL (1999) Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos Int 9(1):91–97

    Article  CAS  Google Scholar 

  35. Compston JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Diez-Perez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA Jr, Adami S, Adachi JD, Investigators G (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the global longitudinal study of osteoporosis in women (GLOW). J Bone Miner Res 29(2):487–493

    Article  Google Scholar 

  36. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17(7):1065–1077

    Article  CAS  Google Scholar 

  37. Tanaka S, Kuroda T, Saito M, Shiraki M (2013) Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 24(1):69–76

    Article  CAS  Google Scholar 

  38. Teasdale N, Simoneau M, Corbeil P, Handrigan G, Tremblay A, Hue O (2013) Obesity alters balance and movement control. Curr Obes Rep 2(3):235–240

    Article  Google Scholar 

  39. Hue O, Simoneau M, Marcotte J, Berrigan F, Dore J, Marceau P, Marceau S, Tremblay A, Teasdale N (2007) Body weight is a strong predictor of postural stability. Gait Post 26(1):32–38

    Article  Google Scholar 

  40. Corbeil P, Simoneau M, Rancourt D, Tremblay A, Teasdale N (2001) Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng 9(2):126–136

    Article  CAS  Google Scholar 

  41. Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45(3):466–472

    Article  Google Scholar 

  42. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23(1):17–29

    Article  CAS  Google Scholar 

  43. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des femmes de Lyon (OFELY) study. J Bone Miner Res 28(7):1679–1687

    Article  CAS  Google Scholar 

  44. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. J Bone Miner Res 24(8):1369–1379

    Article  Google Scholar 

  45. Donaldson MG, Palermo L, Schousboe JT, Ensrud KE, Hochberg MC, Cummings SRFRAX (2009) Risk of vertebral fractures: the fracture intervention trial. J Bone Miner Res 24(11):1793–1799

    Article  Google Scholar 

Download references

Acknowledgements

All authors were involved with the preparation of the manuscript and interpretation of the data. HR led the preparation of the manuscript and statistical analysis. KH led the concept, MP and FB directed the data collection. MP is the lead for the Newcastle Thousand Families Study. We would like to thank the previous research teams involved in the Newcastle Thousand Families Study and the study members for taking part in the investigation. We are grateful to previous funders for supporting the research and to JGW Patterson Foundation, the NIHR BCC. Thanks also to Katherine Kirton and Emma Thompson for their excellent clerical assistance to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hind.

Ethics declarations

A favourable ethical opinion was obtained from the Sunderland Local Research Ethics Committee (Reference 09/H0904/40) and all included study members gave their written consent.

Conflicts of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudman, H.A., Birrell, F., Pearce, M.S. et al. Obesity, bone density relative to body weight and prevalent vertebral fracture at age 62 years: the Newcastle thousand families study. Osteoporos Int 30, 829–836 (2019). https://doi.org/10.1007/s00198-018-04817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-04817-3

Keywords

Navigation