Skip to main content

Advertisement

Log in

Focused tandem shock waves in water and their potential application in cancer treatment

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The generator of two focused successive (tandem) shock waves (FTSW) in water produced by underwater multichannel electrical discharges at two composite electrodes, with a time delay between the first and second shock waves of 10 \(\upmu \)s, was developed. It produces, at the focus, a strong shock wave with a peak positive pressure of up to 80 MPa, followed by a tensile wave with a peak negative pressure of up to \(-80\) MPa, thus generating at the focus a large amount of cavitation. Biological effects of FTSW were demonstrated in vitro on hemolysis of erythrocytes and cell viability of human acute lymphoblastic leukemia cells as well as on tumor growth delay ex vivo and in vivo experiments performed with B16 melanoma, T-lymphoma, and R5-28 sarcoma cell lines. It was demonstrated in vivo that FTSW can enhance antitumor effects of chemotherapeutic drugs, such as cisplatin, most likely due to increased permeability of the membrane of cancer cells induced by FTSW. Synergetic cytotoxicity of FTSW with sonosensitive porphyrin-based drug Photosan on tumor growth was observed, possibly due to the cavitation-induced sonodynamic effect of FTSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Coleman, A.J., Saunders, J.E.: A review of the physical properties and biological effects of the high amplitude acoustic fields used m extracorporeal lithotripsy. Ultrasonics. 31, 75–89 (1993)

    Article  Google Scholar 

  2. Bailey, M.R., Khokhlova, V.A., Sapoznikov, O.A., Kargl, S.G., Crum, L.A.: Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49, 369–388 (2003)

    Article  Google Scholar 

  3. Benes, J., Sunka, P., Kordac, V., Barta, Z., Stuka, C., Figura, Z., Jirsa, M.: Apparatus for clinical performance of extracorporeal lithotripsy. UK Patent GB2199249 (1988)

  4. Sunka, P., Babicky, V., Barta, Z., Benes, J., Kolacek, K., Kordac, V., Stuka, C.: Method and apparatus for adjusting the spark gap of a non-invasive lithotriptor. EU Patent EP0349915 (1990)

  5. Stuka, C., Sunka, P., Benes, J.: New discharge circuit for efficient shock wave generation. In: Brun, R., Dumitrescu, L.Z. (eds.) Shock Waves@Marseille III, pp. 455–458. Springer, Heidelberg (1995)

    Google Scholar 

  6. MEDIPO-ZT, s.r.o. (Ltd.). http://www.medipo.cz/litotryptor.htm (2005)

  7. Haupt, G.: Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J. Urol. 158, 4–11 (1997)

    Article  Google Scholar 

  8. Bailey, M.R., Blackstock, D.T., Cleveland, R.O., Crum, L.A.: Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. J. Acoust. Soc. Am. 104, 2517–2524 (1998)

    Article  Google Scholar 

  9. Bailey, M.R., Blackstock, D.T., Cleveland, R.O., Crum, L.A.: Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. J. Acoust. Soc. Am. 106, 1149–1160 (1999)

    Article  Google Scholar 

  10. Zhong, P., Lin, H., Xi, X., Zhu, S., Bhogte, E.S.: Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J. Acoust. Soc. Am. 105, 1997–2009 (1999)

    Article  Google Scholar 

  11. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am. 110, 1685–1695 (2001)

    Article  Google Scholar 

  12. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med. Biol. 29, 1045–1052 (2003)

    Google Scholar 

  13. Huber, P., Debus, J., Jochle, K., Simiantonakis, I., Jenne, J., Rastert, R., Spoo, J., Lorenz, W.J., Wannenmacher, M.: Control of cavitation activity by different shockwave pulsing regimes. Phys. Med. Biol. 44, 1427–1437 (1999)

    Google Scholar 

  14. Loske, A.M., Prieto, F.E., Fernandez, F., van Cauwelaert, J.: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys. Med. Biol. 47, 3945–3957 (2002)

    Article  Google Scholar 

  15. Alvarez, U.M., Ramirez, A., Fernandez, F., Mendez, A., Loske, A.M.: The influence of single-pulse and tandem shock waves on bacteria. Shock Waves. 17, 441–447 (2008)

    Article  Google Scholar 

  16. Canseco, G., de Icaza-Herrera, M., Fernandez, F., Loske, A.M.: Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics. 51, 803–810 (2011)

    Article  Google Scholar 

  17. Loske, A.M., Fernandez, F., Zendejas, H., Paredes, M., Castano-Tostado, E.: Dual pulse shock wave lithotripsy: in vitro and in vivo study. J. Urol. 174, 2388–2392 (2005)

    Article  Google Scholar 

  18. Loske, A.M., Campos-Guillen, J., Fernandez, F., Castano-Tostado, E.: Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med. Biol. 37, 502–510 (2011)

    Article  Google Scholar 

  19. Sunka, P.: Pulse electrical discharges in water and their applications. Phys. Plasmas. 8, 2587–2594 (2001)

    Article  Google Scholar 

  20. Sunka, P., Babicky, V., Clupek, M., Benes, J., Pouckova, P.: Localized damage of tissues induced by focused shock waves. IEEE Trans. Plasma Sci. 32, 1609–1613 (2004)

    Article  Google Scholar 

  21. Stelmashuk, V., Hoffer, P.: Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities. IEEE Trans. Plasma Sci. 40, 1907–1912 (2012)

    Article  Google Scholar 

  22. Sunka, P., Babicky, V., Clupek, M., Fuciman, M., Lukes, P., Simek, M., Benes, J., Majcherova, Z., Locke, B.R.: Potential applications of pulse electrical discharges in water. Acta Phys. Slovaca. 54, 135–145 (2004)

    Google Scholar 

  23. Sunka, P., Stelmashuk, V., Babicky, V., Clupek, M., Benes, J., Pouckova, P., Kaspar, J., Bodnar, M.: Generation of two successive shock waves focused to a common focal point. IEEE Trans. Plasma Sci. 34, 1382–1385 (2006)

    Article  Google Scholar 

  24. Lukes, P., Clupek, M., Babicky, V., Sunka, P.: Pulsed electrical discharge in water generated using porous ceramic coated electrodes. IEEE Trans. Plasma Sci. 36, 1146–1147 (2008)

    Article  Google Scholar 

  25. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Benes, J., Pouckova, P., Zadinova, M., Zeman, J.: Generation of focused shock waves in water for biomedical applications. In: Machala, Z., Hensel, K., Akishev, Y. (eds.) Plasma for Bio-Decontamination, Medicine and Food Security, NATO Science for Peace and Security Series A: Chemistry and Biology, ch. 31, pp. 403–416. Springer, Dordrecht (2012)

    Chapter  Google Scholar 

  26. Moravkova, A., Malek, O., Pokorna, E., Strnadel, J., Hradecky, J., Horak, V.: Immune characterization of the Lewis rats inoculated with K2 sarcoma cell line and newly derived R5-28 malignant cells. Folia Biol. 51, 159–165 (2005)

    Google Scholar 

  27. Rosenthal, I., Sostaric, J.Z., Riesz, P.: Sonodynamic therapy–a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11, 349–363 (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (202/09/1151) and the Czech Ministry of Education, Youth and Sports (MSM 0021620808). The authors would like to thank Dr. V. Horak from the Institute of Animal Physiology and Genetics AS CR for providing R5-28 malignant cells for the experiments with Lewis rats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lukes.

Additional information

Communicated by G. Jagadeesh and K. Kontis.

The paper was based on work that was presented at the 28th International Symposium on Shock Waves, 17–22 July, 2011, Manchester, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukes, P., Sunka, P., Hoffer, P. et al. Focused tandem shock waves in water and their potential application in cancer treatment. Shock Waves 24, 51–57 (2014). https://doi.org/10.1007/s00193-013-0462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0462-7

Keywords

Navigation