Skip to main content
Log in

Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Short-term forecasts of atmospheric, oceanic, and hydrological effective angular momentum functions (EAM) of Earth rotation excitation are combined with least-squares extrapolation and autoregressive modeling to routinely predict polar motion (PM) and \(\Delta \hbox {UT1}\) for up to 90 days into the future. Based on hindcast experiments covering the years 2016 and 2017, a best performing parametrization was elaborated. At forecast horizons of 10 days, remaining prediction errors are 3.02 and 5.39 mas for PM and \(\Delta \hbox {UT1}\), respectively, corresponding to improvements of 34.5 and 44.7% when compared to predictions reported routinely in Bulletin A of the International Earth Rotation and Reference Systems Service. At forecast horizons of 60 days, prediction errors are 12.52 and 107.96 mas for PM and \(\Delta \hbox {UT1}\), corresponding to improvements of 34.5 and 8.2% over Bulletin A. The 90-day-long EAM forecasts leading to those improved EOP predictions are routinely published on a daily basis at isdc.gfz-potsdam.de/esmdata/eam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akyilmaz O, Kutterer H (2004) Prediction of Earth rotation parameters by fuzzy inference systems. J Geod 78(12):8293. https://doi.org/10.1007/s00190-004-0374-5

    Google Scholar 

  • Barnes RTH, Hide A, White A, Wilson CA (1983) Atmospheric angular-momentum fluctuations. Length-of-day changes and polar motion. Proc R Soc Lond Ser A Math Phys Eng Sci 387(1792):31–73

    Article  Google Scholar 

  • Bizouard C, Gambis D (2008) The combined solution C04 for Earth orientation parameters, recent improvements. In: Drewes H (ed) Series on International Association of Geodesy Symposia, vol 134. Springer, New York, p 330

    Google Scholar 

  • Brzezinski A, Nastuala J, Kolaczek B (2009) Seasonal excitation of polar motion estimated from recent geophysical models and observations. J Geodyn 48:235–240. https://doi.org/10.1016/j.jog.2009.09.021

    Article  Google Scholar 

  • Brzezinski A (1992) Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. Manuscr Geod 17:3–20

    Google Scholar 

  • Chen JL, Wilson CR (2005) Hydrological excitations of polar motion, 1993–2002. Geophys J Int 160:833–839

    Article  Google Scholar 

  • Chen JL (2005) Global mass balance and the length-of-day variation. J Geophys Res 110:B08404. https://doi.org/10.1029/2004JB003474

    Google Scholar 

  • Chen JL, Wilson CR, Zhou YH (2012) Seasonal excitation of polar motion. J Geodyn 62:8–15. https://doi.org/10.1016/j.jog.2011.12.002

    Article  Google Scholar 

  • Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. https://doi.org/10.1029/2010JB000850

    Google Scholar 

  • Chin TM, Gross RS, Boggs DH, Ratcliff JT (2009) Dynamical and observation models in the Kalman Earth orientation filter. IPN Progress Report, pp 42–176

  • Dick WR, Richter B, (2009) Earth orientation centre. IERS annual report, 2007, pp 61–67, international Earth rotation and reference systems service, central bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. ISBN 978-3-89888-917-9

  • Dill R, Dobslaw H (2010) Short-term polar motion forecasts from earth system modeling data. J Geod 84(9):529–536. https://doi.org/10.1007/s00190-010-0391-5

    Article  Google Scholar 

  • Dill R, Dobslaw H, Thomas M (2013) Combination of modeled short-term angular momentum function forecasts from atmosphere, ocean, and hydrology with 90-day EOP predictions. J Geod 2013:567–577

    Article  Google Scholar 

  • Dobslaw H, Dill R, Grötzsch A, Brzezinski A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res 115(B10):406. https://doi.org/10.1029/2009JB007127

    Article  Google Scholar 

  • Dobslaw H, Dill R (2018) Predicting Earth rotation variations from global forecasts of atmosphere-hydrosphere dynamics. Adv Space Res. https://doi.org/10.1016/j.asr.2017.11.044

    Google Scholar 

  • Gross RS, Fukumori I, Menemenlis D, Gegout P (2004) Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J Geophys Res 109:B01406

    Google Scholar 

  • Gross RS, Ratcliff JT (2016) Improving near real-time and predicted earth orientation parameters using IGS ultra-rapid polar motion and length-of-day measurements. In: IGS workshop 2016: GNSS futures, Sydney, Australia, 8–12 Feb 2016

  • Johnson TJ, Luzum BJ, Ray JR (2005) Improved near-term UT1R predictions using forecasts of atmospheric angular momentum. J Geodyn 39:209–221

    Article  Google Scholar 

  • Kalarus M, Schuh H, Kosek W, Akyilmaz O, Bizouard C, Gambis D, Gross R, Jovanovi B, Kumakshev S, Kutterer H, Mendes Cerveira PJ, Pasynok S, Zotov L (2010) Achievements of the Earth orientation parameters prediction comparison campaign. J Geod 840:587–596

    Article  Google Scholar 

  • Kosek W, Kalarus M, Johnson TJ, Wooden WH, McCarthy DD, Popinski W (2005) A comparison of LOD and UT1-UTC forecasts by different combined prediction techniques. Artif Satell 40:119–125

    Google Scholar 

  • Kosek W (2012) Future improvements in EOP prediction. Proceedings IAG 2009 scientific assembly geodesy for planet Earth. In: Kenyon S et al (eds) IAG symposia series, vol 136. Springer, Heidelberg, pp 513–520

  • Madzak M, Schindelegger M, Böhm J, Bosch W, Hagedoorn J (2016) High-frequency Earth rotation variations deduced from altimetry-based ocean tides. J Geod 90:1237–1253

    Article  Google Scholar 

  • Niedzielski T, Kosek W (2008) Prediction of UT1–UTC, LOD and AAM \(\chi _3\) by combination of least-squares and multivariate stochastic methods. J Geod 82:83–92

    Article  Google Scholar 

  • Nastula J, Gross R, Salstein DA (2012) Oceanic excitation of polar motion: Identification of specific oceanic areas important for polar motion excitation. J Geodyn 62:16–23

    Article  Google Scholar 

  • Nastula J, Salstein DA, Popiski W (2015) Hydrological excitations of polar motion from GRACE gravity field solutions. In: International association of geodesy symposia, Springer, Berlin

  • Petit G, Luzum B (2010) IERS conventions 2010. Technical note 36, International Earth rotation and reference systems service, Verlag des Bundesamts fr Kartographie und Geodäsie

  • Petrov S, Brzezinski A, Gubanov V (1995) A stochastic model for polar motion with application to smoothing, prediction, and combining. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2992. Accessed Dec 2017

  • Ray RD, Erofeeva SY (2014) Long-period tidal variations in the length of day. J Geophys Res 119:1498–1509. https://doi.org/10.1002/2013JB010830

    Article  Google Scholar 

  • Ray J, Rebischung P, Griffiths J (2017) IGS polar motion measurement accuracy. Geod Geodyn 8(6):413–420. https://doi.org/10.1016/j.geog.2017.01.008

    Article  Google Scholar 

  • Shen Y, Guo J, Liu X, Wei X, Li W (2017) One hybrid model combining singular spectrum analysis and LS + ARMA for polar motion prediction. Adv Space Res 59(2):513–523. https://doi.org/10.1016/j.asr.2016.10.023

  • Schuh H, Ulrich M, Egger D, Müller J, Schwegmann W (2002) Prediction of Earth orientation parameters by artificial neural networks. J Geod 76(5):247–258. https://doi.org/10.1007/s00190-001-0242-5

    Article  Google Scholar 

  • Stamatakos N, Luzum B, Stetzler B, Shumate N (2011) Recent improvements in the rapid service prediction center products for 2010 and 2011, pp 125–128. https://syrte.obspm.fr/jsr/journees2011/pdf/stamatakos.pdf

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30

    Article  Google Scholar 

  • Wang G (2017) Application of the radial basis function neural network to the short term prediction of the Earth’s polar motion. Stud Geophys Geod. https://doi.org/10.1007/s11200-017-0805-4

    Google Scholar 

  • Xu XQ, Zotov L, Zhou YH (2012) Combined prediction of Earth orientation parameters. In: 2012 proceedings lecture notes in electrical engineering China satellite navigation conference (CSNC), vol 160, no (2), pp 361–369. https://doi.org/10.1007/978-3-642-29175-3-32

  • Yan H, Chao BF (2011) Effect of global mass conservation among geophysical fluids on the seasonal length of day variation. J Geophys Res 117(B2):2156–2202. https://doi.org/10.1029/2011JB008788

    Google Scholar 

  • Zhou YH, Chen JL, Liao XH, Wilson CR (2005) Oceanic excitations on polar motion: a cross comparison among models. Geophys J Int 162:390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dill, R., Dobslaw, H. & Thomas, M. Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. J Geod 93, 287–295 (2019). https://doi.org/10.1007/s00190-018-1158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1158-7

Keywords

Navigation