Skip to main content
Log in

An enhanced strategy for GNSS data processing of massive networks

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Although the computational burden of global navigation satellite systems (GNSS) data processing is nowadays already a big challenge, especially for huge networks, integrated processing of denser networks with data of multi-GNSS and multi-frequency is desired in the expectation of more accurate and reliable products. Based on the concept of carrier range, in this study, the precise point positioning with integer ambiguity resolution is engaged to obtain the integer ambiguities for converting carrier phases to carrier ranges. With such carrier ranges and pseudo-ranges, rigorous integrated processing is realized computational efficiently for the orbit and clock estimation using massive networks. The strategy is validated in terms of computational efficiency and product quality using data of the IGS network with about 460 stations. The experimental validation shows that the computation time of the new strategy increases gradually with the number of stations. It takes about 14 min for precise orbit and clock determination with 460 stations, while the current strategy needs about 82 min. The overlapping orbit RMS is reduced from 27.6 mm with 100 stations to 24.8 mm using the proposed strategy, and the RMS could be further reduced to 23.2 mm by including all 460 stations. Therefore, the new strategy could be applied to massive networks of multi-GNSS and multi-frequency receivers and possibly to achieve GNSS data products of higher quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Boucher C (2008) Accuracy assessment of the ITRF datum definition. In: VI Hotine–Marussi symposium on theoretical and computational geodesy, IAG symposium, vol 132, pp 101–110. doi:10.1007/978-3-540-74584-6_16

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss Jan P (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2,000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Beutler G, Mueller II, Neilan RE (1994) The international GPS service for geodynamics: development and start of official service on January 1, 1994. Bull Geod 68:39–70

    Article  Google Scholar 

  • Blewitt G (2008) Fixed point theorems of GPS carrier phase ambiguity resolution andt heir application to massive network processing: Ambizap. J Geophys Res 113(B12410):2008. doi:10.1029/2008JB005736

    Google Scholar 

  • Blewitt G, Bertiger W, Weiss JP (2010) Ambizap3 and GPS carrier-range: a new data type with IGS applications. IGS Workshop 2010, Newcastle. http://research.ncl.ac.uk/IGS2010/abstract.htm

  • Collins P, Lahaye F, Héroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of ION GNSS 21st international technical meeting of the satellite division. Savannah, US, pp 1315–1322

  • Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of national technical meeting. San Diego, USA, pp 720–732

  • Dang Y, Zhang P, Zhao Z, Bei J (2011) The data processing and analysis of national GNSS CORS network in China. In: The XXV general assembly of IUGG Melbourne, Australia, 2007–2010 China National report on geodesy, Report No. 4

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Dow J, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Gabor MJ, Nerem RS (1999) GPS carrier phase ambiguity resolution using satellite–satellite single difference. In: Proceedings of 12th international technical meeting of satellite division. Nashville, USA, pp 1569–1578

  • Gambis D, Biancale R, Carlucci T, Lemoine JM, Marty JC, Bourda G, Charlot P, Loyer S, Lalanne T, Soudarin L, Deleflie F (2009) Combination of earth orientation parameters and terrestrial frame at the observation level. J Geod 134:3–9

    Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79:103–110. doi:10.2007/s00290-005-0447-0

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang PF, Rothacher M (2006a) A new data processing strategy for huge GNSS global networks. J Geod 80:199–203. doi:10.1007/s00190-006-0044-x

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M (2006b) Integer ambiguity resolution for precise point positioning: applied to fast integrated estimation of very huge GNSS networks. VI Hotine–Marussi symposium of theoretical and computational geodesy: challenge and role of modern geodesy, May 29–June 2, 2006, Wuhan, China

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399. doi:10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Ge M, Douša J, Ramatschi M, Nischan T, Wickert J (2012) A novel real-time precise positioning service system: global precise point positioning with regional augmentation. J GPS 11(1):2–10. doi:10.5081/jgps.11.1.2

    Google Scholar 

  • Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solut 13:263–270. doi:10.1007/s10291-009-0119-2

    Article  Google Scholar 

  • Geng J, Meng X, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84:569–581. doi:10.1007/s00190-010-0399-x

    Article  Google Scholar 

  • Geng J, Shi C, Ge M, Dodson AH, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86:579–589. doi:10.1007/s00190-011-0537-0

    Article  Google Scholar 

  • Gendt G, Dick G, Söhne W (1999) GFZ analysis Center of IGS: Annual Report 1998. IGS 1998 Technical Reports, pp 79–97

  • Gendt G, Deng Z, Ge M, Nischan T, Uhlemann M, Beeskow M, Brandt A (2013) GFZ Analysis Center of IGS Annual Report for 2012. IGS 2012 Technical, Report, pp 61–66

  • Larson KM, van Dam T (2012) Measuring postglacial rebound with GPS and absolute gravity. Geophys Res Lett 27(23):3925–3928. doi:10.1029/2000GL011946

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig J Inst Navig 56(2):135–149

    Google Scholar 

  • Li X, Zhang XH (2012) Improving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolution. J Navig 65:513–529. doi:10.1017/S0373463312000112

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, US, pp 373–386

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2012) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17:211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Khachikyan R, Weber R, Langley, RB, Mervart L, Hugentobler U (2013) IGS-MGEX: preparing the ground for multi-constellation GNSS science. In: 4th international colloquium scientific and fundamental aspects of the Galileo programme, ESA, 2013

  • Neilan R, Fisher S, Khachikyan R, Ceva J, Craddock A, Donnelly N, Maggert D, Walia G (2013) IGS Technical Report 2012 Central Bureau. IGS Technical Report 2012, pp 13–18

  • Sagiya T (2004) A decade of GEONET: 1994–2003: the continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56(8):XXIX–XLI

  • Schaer S, Steigenberger P (2006) Determination and use of GPS differential code bias values. In: Proceedings IGS workshop 2006, Darmstadt, Germany, 8–11 May 2006

  • Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. In: Proceedings of SPIE 7285, international conference on earth observation data processing and analysis (ICEODPA), 72851S (December 29, 2008). doi:10.1117/12.816261

  • Schöne T, Schön N, Thaller D (2009) IGS tide gauge benchmark monitoring pilot project (TIGA): scientific benefits. J Geod 83(3–4):249–261

    Article  Google Scholar 

  • Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geod Sci 1(3):204–214. doi:10.2478/v10156-010-0023-2

    Google Scholar 

  • Snay RA, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104

    Article  Google Scholar 

  • Willis P, Bar-Sever Y-E, Tavernier T (2005) DORIS as a potential part of a global geodetic observing system. J Geodyn 40(4–5):494–501. ISSN 0264–3707. doi:10.1016/j.jog.2005.06.011

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, US, pp 403–412

  • Yang YX, Li JL, Xu JY, Tang J, Guo H, He H (2011) Contribution of the compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819. doi:10.1007/s11434-011-4627-4

    Article  Google Scholar 

  • Zhang FP, Gendt G, Ge M (2007) GPS data processing at GFZ for monitoring the vertical motion of global tide gauge benchmarks, Technical report for projects TIGA and SEAL, GeoForschungsZentrum Potsdam, Scientific Technical, Report STR07/02, pp 13–14

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Geoffrey Blewitt, Dr. Pascal Willis and two anonymous reviewers for their constructive comments which improved the manuscript significantly. We also thank IGS for providing the GNSS data and the precise products. The first author is financially supported by China Scholarship Council (CSC) for his study at the German Research Center for Geosciences (GFZ). This work was also partly supported by the National Natural Science Foundation of China (Nos.: 41374033 and 41304007) and the Changjiang Scholars program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jiang, W., Ge, M. et al. An enhanced strategy for GNSS data processing of massive networks. J Geod 88, 857–867 (2014). https://doi.org/10.1007/s00190-014-0727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0727-7

Keywords

Navigation