Skip to main content

Advertisement

Log in

GPS-derived orbits for the GOCE satellite

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk–dawn orbit with an exceptionally low initial altitude of about 280 km. The onboard 12-channel dual-frequency GPS (Global Positioning System) receiver delivers 1 Hz data, which provides the basis for precise orbit determination (POD) for such a very low orbiting satellite. As part of the European GOCE Gravity Consortium the Astronomical Institute of the University of Bern and the Department of Earth Observation and Space Systems are responsible for the orbit determination of the GOCE satellite within the GOCE High-level Processing Facility. Both quick-look (rapid) and very precise orbit solutions are produced with typical latencies of 1 day and 2 weeks, respectively. This article summarizes the special characteristics of the GOCE GPS data, presents POD results for about 2 months of data, and shows that both latency and accuracy requirements are met. Satellite Laser Ranging validation shows that an accuracy of 4 and 7 cm is achieved for the reduced-dynamic and kinematic Rapid Science Orbit solutions, respectively. The validation of the reduced-dynamic and kinematic Precise Science Orbit solutions is at a level of about 2 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophs Res 112(B9): 401–419. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Bigazzi A, Frommknecht B (2010) Note on GOCE instruments positioning. Issue 3.1. http://earth.esa.int/download/goce/GOCE-LRR-GPS-positioning-Memo_3.1_[XGCE-GSEG-EOPG-TN-09-0007v3.1].pdf

  • Bock H (2004) Efficient methods for determining precise orbits of low Earth orbiters using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 65, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, Zürich

  • Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10): 1638–1647. doi:10.1016/j.asr.2007.02.053

    Article  Google Scholar 

  • Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11): 1083–1094. doi:10.1007/s00190-009-0326-1

    Article  Google Scholar 

  • Bock H, Jäggi A, Meyer U, Dach R, Beutler G (2011) Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Adv Space Res. 47(11): 1885–1893. doi:10.1016/j.asr.2011.01.017

    Article  Google Scholar 

  • Dach R (2009) Code analysis center down. IGS Mail No. 6033. IGS Central Bureau Information System

  • Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland. http://www.bernese.unibe.ch/docs/DOCU50.pdf, user manual

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The GOCE gravity mission: ESA’s first core explorer. In: Proceedings of the 3rd GOCE User Workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 1–7

  • ESA (2010a) GOCE Level 2 Product Data Handbook. http://earth.esa.int/pub/ESA_DOC/GOCE/GO-MA-HPF-GS-0110_4.2-ProductDataHandbook.pdf

  • ESA (2010b) GOCE Standards. http://earth.esa.int/pub/ESA_DOC/GOCE/GOCE_Standards_3.2.pdf

  • Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10:EGU2008-A-03426

  • Gerlach C, Földváry L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30(20): 2037. doi:10.1029/2003GL018025

    Article  Google Scholar 

  • Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 5(7):48–52. Format specifications available at ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt

  • Intelisano A, Mazzini L, Notarantonio A, Landenna S, Zin A, Scaciga L, Marradi L (2008) Recent flight experiences of TAS-I on-board navigation equipments. In: Proceedings of the 4th ESA workshop on satellite navigation user equipment technologies, NAVITEC’2008, 10–12 Dec 2008, Noordwijk, The Netherlands

  • Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1): 47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10): 1612–1619. doi:10.1016/j.asr.2007.03.012

    Article  Google Scholar 

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12): 1145–1162. doi:10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Jäggi A, Bock H, Floberghagen R (2010) GOCE orbit predictions for SLR tracking. GPS Solut 15(2): 129–137. doi:10.1007/s10291-010-0176-6

    Article  Google Scholar 

  • Jäggi A, Bock H, Prange L, Meyer U, Beutler G (2011) GPS-only gravity field recovery using GOCE, CHAMP, or GRACE. Adv Space Res 47(6): 1020–1028. doi:10.1016/j.asr.2010.11.008

    Article  Google Scholar 

  • Koop R, Gruber T, Rummel R (2006) The status of the GOCE high-level processing facility. In: Proceedings of the 3rd GOCE User Workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 199–205

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dyn 56: 394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • McCarthy DD, Petit G (2004) IERS conventions 2003. IERS technical note no. 32. Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany

  • Montenbruck O, van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3): 261–271. doi:10.1016/j.ast.2005.01.003

    Article  Google Scholar 

  • Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12(4): 289–299. doi:10.1007/s10291-008-0091-2

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay of radio wavelengths. J Geophys Res 101(B2): 3227–3246

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Regguzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F (2011) First GOCE gravity field models derived by three different approaches. J Geod. doi:10.1007/s00190-011-0467-x

  • Pavlis D, Poulouse S, McCarthy J (2006) GEODYN Operations Manual. Contractor report, SGT Inc., Greenbelt, MD

  • Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2): 135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2010) AIUB-CHAMP02S: the influence of GNSS model changes for gravity field recovery using spaceborne GPS. Adv Space Res 45(2): 215–224. doi:10.1016/j.asr.2009.09.020

    Article  Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2): 129–134. doi:10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  • Rothacher M, Schmid R (2010) ANTEX: the antenna exchange format, version 1.4. IGS Central Bureau Information System, ftp://ftp.igs.org/pub/station/general/antex14.txt

  • Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions—principles and aims. J Geodyn 33: 3–20. doi:10.1016/S0264-3707(01)00050-3

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Standish EM (1998) JPL planetary and lunar ephemerides, DE405/LE405. JPL IOM 312.F-98-048.

  • Švehla D, Rothacher M (2005) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) A window on the future of geodesy, vol 128. Springer, Berlin, pp 181–188. doi:10.1007/3-540-27432-4_32

    Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9): L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • van den IJssel J, Visser P, Rodriguez EP (2003) CHAMP precise orbit determination using GPS data. Adv Space Res 31(8): 1889–1895. doi:10.1016/S0273-1177(03)00161-3

    Article  Google Scholar 

  • van Helleputte T (2004) User manual for the GHOST orbit determination software. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, fDS-SUM-3110

  • Visser P, van den IJssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Hugentobler U, Švehla D (2006) Rapid and precise orbit determination for the GOCE satellite. In: Proceedings of the 3rd GOCE user workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 235–239

  • Visser P, van den IJssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Švehla D, Hugentobler U, Heinze M (2009) Orbit determination for the GOCE satellite. Adv Space Res 43(5): 760–768. doi:10.1016/j.asr.2008.09.016

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, H., Jäggi, A., Meyer, U. et al. GPS-derived orbits for the GOCE satellite. J Geod 85, 807–818 (2011). https://doi.org/10.1007/s00190-011-0484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0484-9

Keywords

Navigation