Skip to main content
Log in

GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The use of observations from the Global Positioning System (GPS) has significantly impacted the study of the ionosphere. As it is widely known, dual-frequency GPS observations can provide very precise estimation of the slant Total Electron Content (sTEC—the linear integral of the electron density along a ray-path) and that the precision level is bounded by the carrier-phase noise and multi-path effects on both frequencies. Despite its precision, GPS sTEC estimations can be systematically affected by errors in the estimation of the satellites and receivers by Inter-Frequency Biases (IFB) that are simultaneously determined with the sTEC. Thus, the ultimate accuracy of the GPS sTEC estimation is determined by the errors with which the IFBs are estimated. This contribution attempts to assess the accuracy of IFBs estimation techniques based on the single layer model for different ionospheric regions (low, mid and high magnetic latitude); different seasons (summer and winter solstices and spring and autumn equinoxes); different solar activity levels (high and low); and different geomagnetic conditions (quiet and very disturbed). The followed strategy relies upon the generation of a synthetic data set free of IFB, multi-path, measurement noise and of any other error source. Therefore, when a data set with such properties is used as the input of the IFB estimation algorithms, any deviation from zero on the estimated IFBs should be taken as indications of the errors introduced by the estimation technique. The truthfulness of this assessment work is warranted by the fact that the synthetic data sets resemble, as realistically as possible, the different conditions that may happen in the real ionosphere. The results of this work show that during the high solar activity period the accuracy for the estimated sTEC is approximately of ±10 TECu for the low geomagnetic region and of ±2.2 TECu for the mid-latitude. During low solar activity the accuracy can be assumed to be in the order of ±2 TECu. For the geomagnetic high-disturbed period, the results show that the accuracy is degraded for those stations located over the region where the storm has the strongest impact, but for those stations over regions where the storm has a moderate effect, the accuracy is comparable to that obtained in the quiet period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azpilicueta F, Brunini C (2008) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geodesy. doi:10.1007/s00190-008-0244-7

  • Azpilicueta F, Brunini C, Radicella S (2005) Global ionospheric maps from GPS observations using modip latitude. JASR. doi:10.1016/j.asr.2005.07.069

  • Belehaki A, Jakowski N, Reinisch BW (2003) Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values. Radio Sci 38(6): 1105

    Article  Google Scholar 

  • Bilitza D, Hernandez-Pajares M, Juan JM, Sanz J (1998) Comparison between IRI and GPS-IGS derived electron content during 1991–1997: first results. Phys Chem Earth 24(4): 311–319

    Google Scholar 

  • Bishop G, Walsh D, Daly P, Mazzella A, Holland E (1994) Analysis of the temporal stability of GPS and GLONASS group delay correction terms seen in various sets of ionospheric delay data. In: Proceeding ION GPS-94, pp 1653–1661

  • Brunini C, Azpilicueta F (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8): 773–785

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicela SM (2007) Calibration errors on experimental slant total electron content determined with GPS. J Geod 81(2): 111–120. doi:10.1007/s00190-006-0093-1

    Article  Google Scholar 

  • Ciraolo L, Spalla C (1997) Compararison of ionospheric total electron content from the Navy Navigation Satellite System and GPS. Radio Sci 32(3): 1071–1080

    Article  Google Scholar 

  • Conker R, El-Arini MB (1998) A novel approach for an ionospheric obliquity process responsive to azimuthal variation. Presented at the ION-GPS-98, Nashville

  • Datta-Barua S, Walter T, Konno H, Blanch J, Enge P, Komjathy A (2005) Verification of low latitude ionosphere effects on WAAS during October 2003 geomagnetic storm. In: Proceedings of the ION 61st annual meeting, pp 429–439

  • Davies K, Hartmann GK (1997) Studying the ionosphere with the Global Positioning System. Radio Sci 32(4): 1695–1703

    Article  Google Scholar 

  • Gao Y (2008) GNSS biases, their effect and calibration. Presented at IGS Analysis Center Workshop 2008, Miami Beach, 2–6 June 2008. http://www.ngs.noaa.gov/IGSWorkshop2008/prog.html

  • Goposchkin EM, Coster AJ (1992) GPS L1–L2 bias determination. In: Proceeding international Beacon satellite symposium, Massachusetts

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2008), The IGS VTEC maps: a reliable source of ionospheric information since 1998, J Geodes. doi:10.1007/s00190-008-0266-1

  • Ho CM, Wilson BD, Manucci AM, Linqwister UJ, Yuan DN (1997) A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar and the Bent model. Radio Sci 32(4): 1499–1512

    Article  Google Scholar 

  • Jakowski N, Sardon E, Schüter S (1998) GPS-Based TEC observations in comparison with IRI95 and the European TEC model NTCM2. Adv Space Res 22(6): 803–806

    Article  Google Scholar 

  • Jodogne JC, Nebdi H, Warnant R (2004) GPS TEC and ITEC from digisonde data compared with NEQUICK model. Adv Space Res 2: 269–273

    Google Scholar 

  • Manucci AJ, Iijima BA, Lindqwister UJ, Pi X, Sparks L, Wilson BD (1999) GPS and ionosphere: URSI reviews of Radio Science, Jet Propulsion Laboratory, Pasadena

  • Mosert M, Gende M, Brunini C, Ezquer R (2007) Comparisons of IRI TEC prediction with GPS and digisonda measurements at Ebro. Advances in Space Research, Elsevier, pp 841–847. doi:10.1016/j.asr.2006.10.02039

  • Nava B, Coïsson P, Miró Amarante G, Azpilicueta F, Radicella SM (2005) A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Ann Geophys 48(2): 313–320

    Google Scholar 

  • Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. JASR 27(1): 35–40

    Article  Google Scholar 

  • Rawer, K (eds) (1984) Encyclopedia of Physics, geophysics III: part VII. Springer, Berlin, pp 389–391

    Google Scholar 

  • Sahai Y, Fagundes PR, Becker-Guedes F, Bolzan MJA, Abalde JR, Pillat VG, de Jesus R, Lima WLC, Crowley G, Shiokawa K, MacDougall JW, Lan HT, Igarashi K, Bittencourt C (2005) Effects of the major geomagnetic storms of October 2003 on the equatorial and low-latitude F-region in two longitudinal sectors. J Geophys Res 110: A12S91. doi:10.1029/2004JA010999

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29: 577–586

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System, PhD Thesis of Bern University, 164 p

  • Schaer S (2008) Differential Code Biases (DCB) in GNSS Analysis. Presented at IGS Analysis Center Workshop 2008, Miami Beach, 2–6 June 2008. http://www.ngs.noaa.gov/IGSWorkshop2008/prog.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Azpilicueta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunini, C., Azpilicueta, F. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84, 293–304 (2010). https://doi.org/10.1007/s00190-010-0367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0367-5

Keywords

Navigation