Skip to main content
Log in

Titanium aluminides processing by additive manufacturing – a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Manufacturing titanium aluminides (TiAls) parts are challenging due to their low ductility and fracture toughness. However, processing these materials is of significant interest for applications in high-temperature environments such as the aerospace and automotive industries. Traditional production methods such as casting and forging have been prominent in TiAl manufacturing. Currently, direct energy deposition (DED), electron beam additive manufacturing (EBAM), and laser powder bed fusion (L-PBF) additive manufacturing processes are being considered promising technologies for manufacturing TiAl parts. Recent results suggest the potential for these AM methods to be used for the industrial processing of TiAls. This article reviews the different processing methods for TiAls, highlighting the advantages and progress in using additive manufacturing (AM) technologies. Process characteristics, processing challenges and their causes, and potential mitigation strategies are discussed for each AM method considered. The process-structure–property (PSP) relationships are reviewed, highlighting the optimum process parameters and related mechanical properties. In addition, L-PBF is emphasized as a prospective solution for manufacturing different TiAl alloys. Prospects and recommendations for future studies are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

BDTT:

Brittle to ductile transition temperature

CAD:

Computer-aided design

DED:

Direct energy deposition

E:

Energy density

EBAM:

Electron beam-powder bed fusion

EBSD:

Electron back scattered diffraction

FGM:

Functionally graded material

GO:

Graphene oxide

h:

Hatch spacing

HIP:

Hot isostatic press

HT:

Heat treatment

L:

Laser power

L-PBF:

Laser-based-powder bead fusion

LPT:

Low-pressure turbine

OM:

Optical microscope

OM:

Optical microscope

PM:

Powder metallurgy

PSP:

Process structure property

S:

Scanning speed

SEM:

Scanning electron microscope

t:

Layer thickness

TEM:

Transmission electron microscope

TiAl:

Titanium aluminide

UTS:

Ultimate tensile strength

XRD:

X-ray diffraction

at%:

Atomic percent

3D:

Three-dimensional

∆f:

Defocusing distance

α:

Alpha

β:

Beta

γ:

Gamma

C:

Celsius

g:

Gram

h:

Hour

J:

Joule

K:

Kelvin

M:

Mega

m:

meter

mm:

Millimeter

µn:

Micrometer

min:

Minute

Pa:

Pascal

ppm:

Parts per million

s:

Second

References

  1. Kothari K, Radhakrishnan R, Wereley NM (2012) Advances in gamma titanium aluminides and their manufacturing techniques. Prog Aerosp Sci 55:1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

  2. Wu X (2006) Review of alloy and process development of TiAl alloys. Intermetallics 14:1114–1122. https://doi.org/10.1016/j.intermet.2005.10.019

  3. Chen W, Li Z (2019) 11 - Additive manufacturing of titanium aluminides. In: Froes F, Boyer RBT-AM for the AI (eds). Elsevier, pp 235–263

  4. Taniguchi S, Shibata T (1996) Influence of additional elements on the oxidation behaviour of TiAl. Intermetallics 4:S85–S93. https://doi.org/10.1016/0966-9795(96)00017-9

  5. Hashimoto K, Kimura M, Mizuhara Y (1998) Alloy design of gamma titanium aluminides based on phase diagrams. Intermetallics 6:667–672. https://doi.org/10.1016/S0966-9795(98)00048-X

  6. Salishchev GA, Imayev RM, Senkov ON et al (2000) Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working. Mater Sci Eng A 286:236–243. https://doi.org/10.1016/S0921-5093(00)00806-6

  7. Clemens H, Kestler H (2000) Processing and applications of intermetallic γ-TiAl-based alloys. Adv Eng Mater 2:551–570. https://doi.org/10.1002/1527-2648(200009)2:9/551/AID-ADEM551/3.0.CO;2-U

  8. Godor F, Werner R, Lindemann J et al (2015) Microstructure characterization of intermetallic γ-TiAl based alloys after high-temperature deformation: presented at the Metallography Conference 2014 in Leoben, Austria. Pract Metallogr 52:239–248. https://doi.org/10.3139/147.110338

  9. Klein T, Clemens H, Mayer S (2016) Advancement of compositional and microstructural design of intermetallic γ-TiAl based alloys determined by atom probe tomography. Mater 9

  10. Kastenhuber M, Rashkova B, Clemens H, Mayer S (2014) Advanced intermetallic γ-TiAl based alloys with improved microstructural stability during creep. MRS Online Proc Libr 1760:67–72. https://doi.org/10.1557/opl.2014.968

    Article  Google Scholar 

  11. Liu CT, Schneibel JH, Maziasz PJ et al (1996) Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics 4:429–440. https://doi.org/10.1016/0966-9795(96)00047-7

  12. Chen G, Peng Y, Zheng G et al (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881. https://doi.org/10.1038/nmat4677

    Article  Google Scholar 

  13. Inui H, Oh MH, Nakamura A, Yamaguchi M (1992) Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl. Acta Metall Mater 40:3095–3104. https://doi.org/10.1016/0956-7151(92)90472-Q

  14. Karadge M, Gouma PI, Kim Y-W (2003) Precipitation strengthening in K5-series γ-TiAl alloyed with silicon and carbon. Metall Mater Trans A 34:2129–2138. https://doi.org/10.1007/s11661-003-0277-8

    Article  Google Scholar 

  15. Yamamoto Y, Takeyama M, Matsuo T (2002) Stability of lamellar microstructure consisting of γ/γ interfaces in Ti–48Al–8Nb single crystal at elevated temperatures. Mater Sci Eng A 329–331:631–636. https://doi.org/10.1016/S0921-5093(01)01660-4

  16. Kim Y-W (1998) Strength and ductility in TiAl alloys. Intermetallics 6:623–628. https://doi.org/10.1016/S0966-9795(98)00037-5

  17. Umakoshi Y, Nakano T, Yamane T (1992) The effect of orientation and lamellar structure on the plastic behavior of TiAl crystals. Mater Sci Eng A 152:81–88. https://doi.org/10.1016/0921-5093(92)90050-B

  18. Hazzledine PM, Kad BK (1995) Yield and fracture of lamellar γα2 TiAl alloys. Mater Sci Eng A 192–193:340–346. https://doi.org/10.1016/0921-5093(94)03216-5

  19. Kestler H, Clemens H (2003) Production, processing and application of γ(TiAl)-based alloys. Titan Alloy 351–392

  20. Clemens H, Mayer S (2013) Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15:191–215. https://doi.org/10.1002/adem.201200231

  21. Lütjering G, Williams JC (2007) Titanium. Springer Science & Business Media

  22. Clemens H, Mayer S (2014) Development status, applications and perspectives of advanced intermetallic titanium aluminides. In: Materials Science Forum. Trans Tech Publ pp 15–20

  23. Yadav MK, Siddiquee AN, Khan ZA (2018) Fabrication of promising material ‘titanium aluminide’: methods and issues (a status report). Mater Res Express 5:116504. https://doi.org/10.1088/2053-1591/aadb2a

    Article  Google Scholar 

  24. Ye HQ (1999) Recent developments in Ti3Al and TiAl intermetallics research in China. Mater Sci Eng A 263:289–295. https://doi.org/10.1016/S0921-5093(98)01159-9

  25. Bewlay BP, Weimer M, Kelly T et al (2013) The science, technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Online Proc Libr 1516:49–58. https://doi.org/10.1557/opl.2013.44

    Article  Google Scholar 

  26. Hu D, Huang A, Jiang H et al (2006) Pre-yielding and pre-yield cracking in TiAl-based alloys. Intermetallics 14:82–90. https://doi.org/10.1016/j.intermet.2005.04.016

  27. Loretto MH, Godfrey AB, Hu D et al (1998) The influence of composition and processing on the structure and properties of TiAl-based alloys. Intermetallics 6:663–666. https://doi.org/10.1016/S0966-9795(98)00035-1

  28. Johnson DR, Inui H, Yamaguchi M (1998) Crystal growth of TiAl alloys. Intermetallics 6:647–652. https://doi.org/10.1016/S0966-9795(98)00056-9

  29. Wang G-X, Dahms M, Leitner G, Schultrich S (1994) Titanium aluminides from cold-extruded elemental powders with Al-contents of 25–75 at% Al. J Mater Sci 29:1847–1853. https://doi.org/10.1007/BF00351304

    Article  Google Scholar 

  30. Hofmann U, Blum W (1999) Microstructural evolution during high temperature deformation of lamellar Ti48Al–2Nb–2Cr. Intermetallics 7:351–361. https://doi.org/10.1016/S0966-9795(98)00097-1

  31. Engel B, Bourell DL (2000) Titanium alloy powder preparation for selective laser sintering. Rapid Prototyp J 6:97–106. https://doi.org/10.1108/13552540010323574

    Article  Google Scholar 

  32. Ivasishin OM, Sawakin DG, Moxson VS et al (2002) Titanium powder metallurgy for automotive components. Mater Technol 17:20–25. https://doi.org/10.1080/10667857.2002.11752959

    Article  Google Scholar 

  33. Wang L, Liu Y, Zhang W et al (2011) Optimization of pack parameters for hot deformation of TiAl alloys. Intermetallics 19:68–74. https://doi.org/10.1016/j.intermet.2010.09.011

  34. Ackelid U (2010) The new EBM process for gamma titanium aluminide. In: an Arcam-Avio collaboration, in: Presented at the EBM User Group Meeting. Florida

  35. Polozov I, Kantyukov A, Popovich V et al (2020) Microstructure and mechanical properties of tial-based alloy produced by selective laser melting. In: Proceedings of the 29th International Conference on Metallurgy and Materials (METAL 2020). TANGER Ltd

  36. Thomas M (2017) Progress in the understanding of the microstructure evolution of direct laser fabricated TiAl. Mater Sci Forum 879:1939–1944. https://doi.org/10.4028/www.scientific.net/MSF.879.1939

    Article  Google Scholar 

  37. Cakmak E, Nandwana P, Shin D et al (2019) A comprehensive study on the fabrication and characterization of Ti–48Al–2Cr–2Nb preforms manufactured using electron beam melting. Materialia 6:100284. https://doi.org/10.1016/j.mtla.2019.100284

  38. Gussone J, Garces G, Haubrich J et al (2017) Microstructure stability of γ-TiAl produced by selective laser melting. Scr Mater 130:110–113. https://doi.org/10.1016/j.scriptamat.2016.11.028

  39. Biamino S, Penna A, Ackelid U et al (2011) Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation. Intermetallics 19:776–781. https://doi.org/10.1016/j.intermet.2010.11.017

  40. Murr LE, Gaytan SM, Ceylan A et al (2010) Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater 58:1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032

  41. Gao P, Wang Z, Zeng X (2019) Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting. Int J Light Mater Manuf 2:355–361. https://doi.org/10.1016/j.ijlmm.2019.04.001

  42. Lober L, Schimansky FP, Kühn U et al (2014) Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy. J Mater Process Technol 214:1852–1860. https://doi.org/10.1016/j.jmatprotec.2014.04.002

  43. Gussone J, Hagedorn Y-C, Gherekhloo H et al (2015) Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures. Intermetallics 66:133–140. https://doi.org/10.1016/j.intermet.2015.07.005

  44. Li W, Liu J, Zhou Y et al (2016a) Effect of substrate preheating on the texture, phase and nanohardness of a Ti–45Al–2Cr–5Nb alloy processed by selective laser melting. Scr Mater 118:13–18. https://doi.org/10.1016/j.scriptamat.2016.02.022

  45. Li W, Liu J, Zhou Y et al (2016b) Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. J Alloys Compd 688:626–636. https://doi.org/10.1016/j.jallcom.2016.07.206

  46. Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng Ser C 99:481–487. https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  47. Yue H, Peng H, Li R et al (2020) Selective electron beam melting of TiAl alloy: metallurgical defects, tensile property, and determination of process window. Adv Eng Mater 22:2000194. https://doi.org/10.1002/adem.202000194

  48. Anwar S, Ahmed N, Abdo BM et al (2018) Electron beam melting of gamma titanium aluminide and investigating the effect of EBM layer orientation on milling performance. Int J Adv Manuf Technol 96:3093–3107. https://doi.org/10.1007/s00170-018-1802-7

    Article  Google Scholar 

  49. Thomas M, Malot T, Aubry P et al (2016) The prospects for additive manufacturing of bulk TiAl alloy. Mater High Temp 33:571–577. https://doi.org/10.1080/09603409.2016.1171510

    Article  Google Scholar 

  50. Schwerdtfeger J, Körner C (2014) Selective electron beam melting of Ti–48Al–2Nb–2Cr: microstructure and aluminium loss. Intermetallics 49:29–35. https://doi.org/10.1016/j.intermet.2014.01.004

  51. Vogelpoth A, Schleifenbaum JH, Rittinghaus S (2019) Laser additive manufacturing of titanium aluminides for turbomachinery applications

  52. Murr LE, Gaytan SM, Ramirez DA et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14. https://doi.org/10.1016/S1005-0302(12)60016-4

  53. Gibson I, Rosen DW, Stucker B, Khorasani M (2021) Additive manufacturing technologies. Springer

    Book  Google Scholar 

  54. Astm I (2015) ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM Int West Conshohocken, PA 3:5

  55. Sing SL, Tey CF, Tan JHK et al (2019) 3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing, Second Edi. Elsevier Ltd

  56. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  57. Barroqueiro B, Andrade-Campos A, Valente RAF, Neto V (2019) Metal additive manufacturing cycle in aerospace industry: a comprehensive review. J Manuf Mater Process 3:1–21. https://doi.org/10.3390/jmmp3030052

    Article  Google Scholar 

  58. Thomas M, Malot T, Aubry P (2017) Laser metal deposition of the intermetallic TiAl alloy. Metall Mater Trans A 48:3143–3158. https://doi.org/10.1007/s11661-017-4042-9

    Article  Google Scholar 

  59. Baudana G, Biamino S, Ugues D et al (2016) Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of Politecnico di Torino. Met Powder Rep 71:193–199. https://doi.org/10.1016/j.mprp.2016.02.058

  60. Lober L, Biamino S, Ackelid U et al (2011) Comparison of selective laser and electron beam melted titanium aluminides. Conference paper of 22nd International symposium “Solid freeform fabrication proceedings.” University of Texas, Austin, pp 547–556

    Google Scholar 

  61. Moll JH, Whitney E, Yolton CF, Habel U (1999) Laser forming of gamma titanium aluminide. Gamma Titan Alum 255–263

  62. Srivastava D, Hu D, Chang ITH, Loretto MH (1999) The influence of thermal processing route on the microstructure of some TiAl-based alloys. Intermetallics 7:1107–1112. https://doi.org/10.1016/S0966-9795(99)00029-1

  63. Zhang XD, Brice C, Mahaffey DW et al (2001) Characterization of laser-deposited TiAl alloys. Scr Mater 44:2419–2424. https://doi.org/10.1016/S1359-6462(01)00915-0

  64. Srivastava D, Chang ITH, Loretto MH (2001) The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 9:1003–1013. https://doi.org/10.1016/S0966-9795(01)00063-2

  65. Srivastava D, Chang ITH, Loretto MH (2000) The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components. Mater Des 21:425–433. https://doi.org/10.1016/S0261-3069(99)00091-6

  66. Liu YC, Guo ZQ, Wang T et al (2001) Directional growth of metastable phase γ in laser-remelted Ti–Al. J Mater Process Technol 108:394–397. https://doi.org/10.1016/S0924-0136(00)00851-7

  67. Qu HP, Wang HM (2007) Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys. Mater Sci Eng A 466:187–194. https://doi.org/10.1016/j.msea.2007.02.073

  68. Rittinghaus S-K, Weisheit A, Mathes M, Vargas WG (2016) Laser metal deposition of titanium aluminides – a future repair technology for jet engine blades? Proc 13th World Conf Titan 1205–1210

  69. Qu HP, Li P, Zhang SQ et al (2010) The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys. Mater Des 31:2201–2210. https://doi.org/10.1016/j.matdes.2009.10.045

  70. Brewer G (2012) Electron-beam technology in microelectronic fabrication. Elsevier

    Google Scholar 

  71. Cormier D, Harrysson O, Mahale T, West H (2007) Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Res Lett Mater Sci 2007:34737. https://doi.org/10.1155/2007/34737

    Article  Google Scholar 

  72. Semiatin SL, Ivanchenko VG, Ivasishin OM (2004) Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys. Metall Mater Trans B 35:235–245. https://doi.org/10.1007/s11663-004-0025-5

    Article  Google Scholar 

  73. Klassen A, Forster VE, Juechter V, Körner C (2017) Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl. J Mater Process Technol 247:280–288. https://doi.org/10.1016/j.jmatprotec.2017.04.016

  74. Lin B, Chen W, Yang Y et al (2020) Anisotropy of microstructure and tensile properties of Ti–48Al–2Cr–2Nb fabricated by electron beam melting. J Alloys Compd 830:154684. https://doi.org/10.1016/j.jallcom.2020.154684

  75. Liu YJ, Li SJ, Wang HL et al (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113:56–67. https://doi.org/10.1016/j.actamat.2016.04.029

  76. Caprio L, Demir AG, Chiari G, Previtali B (2020) Defect-free laser powder bed fusion of Ti–48Al–2Cr–2Nb with a high temperature inductive preheating system. J Phys Photonics 2:24001. https://doi.org/10.1088/2515-7647/ab7080

    Article  Google Scholar 

  77. Shen N, Chou K (2012) Thermal modeling of electron beam additive manufacturing process: powder sintering effects 287–295

  78. Mohammad A, Alahmari AM, Mohammed MK et al (2017) Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting. Mater 10

  79. Todai M, Nakano T, Liu T et al (2017) Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting. Addit Manuf 13:61–70. https://doi.org/10.1016/j.addma.2016.11.001

  80. Terner M, Biamino S, Epicoco P et al (2012) Electron beam melting of high niobium containing tial alloy: feasibility investigation. steel Res Int 83:943–949. https://doi.org/10.1002/srin.201100282

  81. Baudana G, Biamino S, Klöden B et al (2016) Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: feasibility investigation. Intermetallics 73:43–49. https://doi.org/10.1016/j.intermet.2016.03.001

  82. Rastkar AR, Shokri B (2010) Surface transformation of Ti–45Al–2Nb–2Mn–1B titanium aluminide by electron beam melting. Surf Coatings Technol 204:1817–1822. https://doi.org/10.1016/j.surfcoat.2009.11.019

  83. Calignano F, Manfredi D, Ambrosio EP et al (2017) Overview on additive manufacturing technologies. Proc IEEE 105:593–612. https://doi.org/10.1109/JPROC.2016.2625098

    Article  Google Scholar 

  84. Vilaro T, Kottman-Rexerodt V, Thomas M et al (2010) Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes. In: Advanced Materials Research. Trans Tech Publ pp 586–591

  85. Shi Q, Gu D, Xia M et al (2016) Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol 84:9–22. https://doi.org/10.1016/j.optlastec.2016.04.009

  86. Bertoli US, Guss G, Wu S et al (2017) In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Des 135:385–396. https://doi.org/10.1016/j.matdes.2017.09.044

  87. Shi X, Ma S, Liu C, Wu Q (2017) Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 90:71–79. https://doi.org/10.1016/j.optlastec.2016.11.002

  88. Shi X, Wang H, Feng W et al (2020) The crack and pore formation mechanism of Ti–47Al–2Cr–2Nb alloy fabricated by selective laser melting. Int J Refract Met Hard Mater 91:105247. https://doi.org/10.1016/j.ijrmhm.2020.105247

  89. Doubenskaia M, Domashenkov A, Smurov I, Petrovskiy P (2018) Study of selective laser melting of intermetallic TiAl powder using integral analysis. Int J Mach Tools Manuf 129:1–14. https://doi.org/10.1016/j.ijmachtools.2018.02.003

  90. Chen R, Wang Q, Yang Y et al (2018) Brittle–ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys. Intermetallics 93:47–54. https://doi.org/10.1016/j.intermet.2017.11.009

  91. Kim Y-K, Hong JK, Lee K-A (2020) Enhancing the creep resistance of electron beam melted gamma Ti–48Al–2Cr–2Nb alloy by using two-step heat treatment. Intermetallics 121:106771. https://doi.org/10.1016/j.intermet.2020.106771

  92. Das S, McWilliam J, Wu B, Beaman JJ (1991) Design of a high temperature workstation for the selective laser sintering process. In: 1991 International Solid Freeform Fabrication Symposium

  93. Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36. https://doi.org/10.1108/13552549510078113

    Article  Google Scholar 

  94. McWilliams J, Hysinger C, Beaman JJ (1992) Design of a high temperature process chamber for the selective laser sintering process. In: 1992 International Solid Freeform Fabrication Symposium

  95. Wilkes J, Hagedorn Y, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp J 19:51–57. https://doi.org/10.1108/13552541311292736

    Article  Google Scholar 

  96. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86. https://doi.org/10.1016/j.addma.2014.08.001

  97. Demir AG, Previtali B (2017) Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int J Adv Manuf Technol 93:2697–2709. https://doi.org/10.1007/s00170-017-0697-z

    Article  Google Scholar 

  98. Colopi M, Demir AG, Caprio L, Previtali B (2019) Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. Int J Adv Manuf Technol 104:2473–2486. https://doi.org/10.1007/s00170-019-04015-3

    Article  Google Scholar 

  99. Zhang X, Mao B, Liao Y, Zheng Y (2020) Selective laser melting of graphene oxide–reinforced Ti–48Al–2Cr–2Nb: improved manufacturability and mechanical strength. J Mater Res 35:1998–2005. https://doi.org/10.1557/jmr.2020.63

    Article  Google Scholar 

  100. Li W, Liu J, Wen S et al (2016) Crystal orientation, crystallographic texture and phase evolution in the Ti–45Al–2Cr–5Nb alloy processed by selective laser melting. Mater Charact 113:125–133. https://doi.org/10.1016/j.matchar.2016.01.012

  101. Appel F, Oehring M, Paul JDH (2006) Nano-scale design of TiAl alloys based on β-phase decomposition. Adv Eng Mater 8:371–376. https://doi.org/10.1002/adem.200600013

  102. Chen Y, Kong F, Han J et al (2005) Influence of yttrium on microstructure, mechanical properties and deformability of Ti–43Al–9V alloy. Intermetallics 13:263–266. https://doi.org/10.1016/j.intermet.2004.07.014

  103. Zhang Y, Wang X, Kong F et al (2018a) A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation. Mater Charact 138:136–144. https://doi.org/10.1016/j.matchar.2018.02.005

  104. Zhang Y, Wang X, Kong F, Chen Y (2018b) A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain. Mater Lett 214:182–185. https://doi.org/10.1016/j.matlet.2017.12.002

  105. Gao P, Huang W, Yang H et al (2020) Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting. J Mater Sci Technol 39:144–154. https://doi.org/10.1016/j.jmst.2019.08.026

  106. Zhou YH, Lin SF, Hou YH et al (2018) Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting. Appl Surf Sci 441:210–217. https://doi.org/10.1016/j.apsusc.2018.01.296

  107. Chen W, Li JW, Xu L, Lu B (2014) Development of Ti2AlNb alloys: opportunities and challenges. Adv Mater Process 172:23–27

    Google Scholar 

  108. Grigoriev A, Polozov I, Sufiiarov V, Popovich A (2017) In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting. J Alloys Compd 704:434–442. https://doi.org/10.1016/j.jallcom.2017.02.086

  109. Polozov I, Sufiiarov V, Kantyukov A, Popovich A (2019) Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112:106554. https://doi.org/10.1016/j.intermet.2019.106554

  110. Polozov I, Kantyukov A, Goncharov I et al (2020) Additive manufacturing of Ti-48Al-2Cr-2Nb alloy using gas atomized and mechanically alloyed plasma spheroidized powders. Materials (Basel) 13. https://doi.org/10.3390/ma13183952

  111. Kenel C, Dasargyri G, Bauer T et al (2017) Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures. Mater Des 134:81–90. https://doi.org/10.1016/j.matdes.2017.08.034

  112. Robinson J, Ashton I, Fox P et al (2018) Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit Manuf 23:13–24. https://doi.org/10.1016/j.addma.2018.07.001

    Article  Google Scholar 

  113. Jia H, Sun H, Wang H et al (2021) Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol 113:2413–2435. https://doi.org/10.1007/s00170-021-06810-3

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

Hatem A. Soliman: organizing, writing, and editing the manuscript.

M. A. Elbestawi: supervising and revising the manuscript.

Corresponding author

Correspondence to Hatem A. Soliman.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, H.A., Elbestawi, M. Titanium aluminides processing by additive manufacturing – a review. Int J Adv Manuf Technol 119, 5583–5614 (2022). https://doi.org/10.1007/s00170-022-08728-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08728-w

Keywords

Navigation