Skip to main content
Log in

Extreme pressure and antiwear additives for lubricant: academic insights and perspectives

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Extreme pressure (EP) and antiwear (AW) additives are necessary for boundary lubrication. However, their mechanisms and physical and chemical properties remain unclear. EP and AW additives were reviewed to fill gaps in theoretical and industrial applications. Compounds containing chlorine, sulfur, and phosphorus elements were first used in boundary lubrication because of thermal reaction with metal to form film characteristics. First, the mechanisms of traditional EP and AW additives were analyzed, the physical and chemical properties were compared, and properties affecting factors were studied. Traditional EP and AW additives are not environmentally friendly, but nanoparticle EP and AW additives are excellent substitutes. The mechanisms of nanoparticle EP and AW additives were summarized. The influence of nanoparticle structure parameters, concentration, and media polarity on properties was studied. Second, the influence law of non-polar chain length on traditional EP and AW additives was revealed. The improvement interval of traditional EP and AW additives on the performance of the base fluid was determined. The structural advantage of low crystallinity onion-like and multilayer sheet-like low wrinkle effect of nanoparticles was explained. The particle size design principle attached to the surface roughness and size-dependent melting inhibition mechanism was established. The influence of concentration and media polarity on nanoparticle properties was obtained. Finally, the research of minimum amount matching database and mathematical selection model for traditional EP and AW additives and the molecular dynamics analysis of surface-modified nanoparticles and the development of green general-purpose additives based on molecular design are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article.

References

  1. Holmberg K, Erdemir A (2017) Influence of tribology on global energy consumption, costs and emissions. Friction 5:263–284. https://doi.org/10.1007/s40544-017-0183-5

  2. Holmberg K, Andersson P, Nylund N-O, Mäkelä K, Erdemir A (2014) Global energy consumption due to friction in trucks and buses. Tribol Int 78:94–114. https://doi.org/10.1016/j.triboint.2014.05.004

  3. Gao T, Zhang X, Li CH, Zhang Y, Yang M, Jia D, Ji H, Zhao Y, Li R, Yao P (2020) Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. J Manuf Process 51:44–61. https://doi.org/10.1016/j.jmapro.2020.01.024

  4. Gupta MK, Bijwe J (2020) A complex interdependence of dispersant in nano-suspensions with varying amount of graphite particles on its stability and tribological performance. TribolL Int 142:105968. https://doi.org/10.1016/j.triboint.2019.105968

  5. Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A (2017) Global energy consumption due to friction and wear in the mining industry. Tribol Int 115:116–139. https://doi.org/10.1016/j.triboint.2017.05.010

  6. Uzoma PC, Hu H, Khadem M, Penkov OV (2020) Tribology of 2D nanomaterials: a review. Coatings 10:897. https://doi.org/10.3390/coatings10090897

  7. Ahmed NS, Nassar AM (2013) Tribology: fundamentals and advancements. IntechOpen Ltd, New York

    Google Scholar 

  8. Vyavhare K, Timmons RB, Erdemir A, Edwards BL, Aswath PB (2021) Robust interfacial tribofilms by borate-and polymer-coated ZnO nanoparticles leading to improved wear protection under a boundary lubrication regime. Langmuir 37:1743–1759. https://doi.org/10.1021/acs.langmuir.0c02985

  9. Zhang J, Meng YG (2015) Boundary lubrication by adsorption film. Friction 3:115–147. https://doi.org/10.1007/s40544-015-0084-4

  10. Ghanbarzadeh A, Wilson M, Morina A, Dowson D, Neville A (2016) Development of a new mechano-chemical model in boundary lubrication. Tribol Int 93:573–582. https://doi.org/10.1016/j.triboint.2014.12.018

  11. Luiz JF, Spikes H (2020) Tribofilm formation, friction and wear-reducing properties of some phosphorus-containing antiwear additives. Tribol Lett 68. https://doi.org/10.1007/s11249-020-01315-8

  12. Ripoll MR, Tomala AM, Pirker L, Remškar M (2020) In-situ formation of MoS 2 and WS 2 tribofilms by the synergy between transition metal oxide nanoparticles and sulphur-containing oil additives. Tribol Lett 68:1–13. https://doi.org/10.1007/s11249-020-1286-0

  13. Mistry K, Morina A, Erdemir A, Neville A (2013) Tribological performance of EP lubricants with phosphorus-based additives. Tribol Trans 56:645–651. https://doi.org/10.1080/10402004.2013.769288

  14. Chen Y, Liang H (2020) Tribological evaluation of electrical resistance of lubricated contacts. J Tribol-T ASME 142:114502. https://doi.org/10.1115/1.4045578

  15. Boiko MV, Sidashov AV, Boiko TG, Burykin IV, Uflyand IE (2021) The mechanism of formation of boundary lubricating films during friction in a medium of di (2-ethylhexyl) sebacate. Tribol Int 165:107222. https://doi.org/10.1016/j.triboint.2021.107222

  16. Kenneth H, Peter A, Ali E (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234. https://doi.org/10.1016/j.triboint.2011.11.022

  17. Hase A, Mishina H, Wada M (2016) Fundamental study on early detection of seizure in journal bearing by using acoustic emission technique. Wear 346:132–139. https://doi.org/10.1016/j.wear.2015.11.012

  18. Canter N (2007) Special Report: Trends in extreme pressure additives. Tribol Lubr Technol 63:10

    Google Scholar 

  19. Wang H (2005) Study on tribological properties of content chlorine extreme-pressure additives in rap oil. Lubr Eng 110–111+120. https://doi.org/10.3969/j.issn.0254-0150.2005.05.037

  20. Asadauskas SJ, Biresaw G, McClure TG (2010) Effects of chlorinated paraffin and ZDDP concentrations on boundary lubrication properties of mineral and soybean oils. Tribol Lett 37:111–121. https://doi.org/10.1007/s11249-009-9496-5

  21. James M (2017) Chlorinated paraffins. Lubricant additives. CRC Press, Florida, pp 219–223

    Google Scholar 

  22. VoPham T, Bertrand KA, Jones RR, Deziel NC, DuPré NC, James P, Liu Y, Vieira VM, Tamimi RM, Hart JE (2020) Dioxin exposure and breast cancer risk in a prospective cohort study. Environ Res 186:109516. https://doi.org/10.1016/j.envres.2020.109516

  23. Glüge J, Schinkel L, Hungerbühler K, Cariou R, Bogdal C (2018) Environmental risks of medium-chain chlorinated paraffins (MCCPs): a review. Environ Sci Technol 52:6743–6760. https://doi.org/10.1021/acs.est.7b06459

  24. Gao F, Kotvis PV, Tysoe WT (2004) The surface and tribological chemistry of chlorine-and sulfur-containing lubricant additives. Tribol Int 37:87–92. https://doi.org/10.1016/S0301-679X(03)00040-9

  25. Parenago OP, Kuz’mina GN, Zaimovskaya TA (2017) Sulfur-containing molybdenum compounds as high-performance lubricant additives. PetrolL Chem 57:631–642. https://doi.org/10.1134/S0965544117080102

  26. Li F, Jiang H, Zhao SL, Li P (2015) Product analysis and reaction mechanism of high-pressure synthesis of sulfurized isobutylene by one-step method. Chin J Appl Chem 32:771–776. https://doi.org/10.11944/j.issn.1000-0518.2015.07.140397

  27. Alves SM, Schroeter RB, Bossardi JCDS, Andrade CLFD (2011) Influence of EP additive on tool wear in drilling of compacted graphite iron. J Braz Soc Mech SciI 33:197–202. https://doi.org/10.1590/S1678-58782011000200011

  28. Ding HY, Yang XH, Xu LN, Li M, Li SH, Zhang SJ, Xia JL (2020) Analysis and comparison of tribological performance of fatty acid-based lubricant additives with phosphorus and sulfur. J Bioresour Bioprod 5:134–142. https://doi.org/10.1016/j.jobab.2020.04.007

  29. Lozinskii AV, Kuchin DP, Efimov VN, Pakhomova MI (2021) Solving the problems of high-temperature sulfur corrosion in primary oil refineries. Chem Tech Fuels Oil 57:613–618. https://doi.org/10.1007/s10553-021-01283-2

  30. Xu X, Hu J, Yang S, Xie F, Guo L (2016) Extreme pressure synergistic mechanism of bismuth naphthenate and sulfurized isobutene additives. Surf Rev Lett 24:1750071. https://doi.org/10.1142/S0218625X17500718

  31. Liu J, Wang Y, Tang P, Liu N (2015) Tribological performance of overbased calcium alkyl salicylate and sulfurized isobutylene in rapeseed oil. Mol Med Rep 11:3291–3294. https://doi.org/10.3969/j.issn.1005-2399.2015.11.016

  32. Zysman CE, Farrell PG, Harpp DN (2004) Desulfurization of aromatic polysulfides with triphenylphosphine. J Sulfur Chem 25:101–109. https://doi.org/10.1080/1741599042000203364

  33. Minami I (2017) Molecular science of lubricant additives. Appl Sci 7:445. https://doi.org/10.3390/app7050445

  34. Li C (2019) Summary of Sulfurized Additives. Synth Lubr 46:23–26. https://doi.org/10.3969/j.issn.1672-4364.2019.03.007

  35. Jiang BB, Chen N, Zheng LC, Wang JD, Ke YL, Fu XS, Yang YR (2014) Research on reaction kinetics of sulfurized isobutylene by one-step synthesis. ACTA Pertrolei Sinica 30:501. https://doi.org/10.3969/j.issn.1001-8719.2014.03.018

  36. Niu WX, Yuan M, Wang PF, Shi Q, Xu H, Dong JX (2020) One-pot synthesis of SIB@ ZIF-8 with enhanced anti-corrosion properties and excellent lubrication properties. Tribol Int 151:106491.https://doi.org/10.1016/j.triboint.2020.106491

  37. Johnson B, Wu H, Desanker M, Pickens D, Chung Y-W, Wang QJ (2018) Direct formation of lubricious and wear-protective carbon films from phosphorus-and sulfur-free oil-soluble additives. Tribol Lett 66:2. https://doi.org/10.1007/s11249-017-0945-2

  38. Gao XL, Liu DH, Song Z, Dai K (2018) Isosteric design of friction-reduction and anti-wear lubricant additives with less sulfur content. Friction 6:164–182. https://doi.org/10.1007/s40544-017-0162-x

  39. Righi MC, Loehlé S, Bouchet MDB, Mambingo-Doumbe S, Martin JM (2016) A comparative study on the functionality of S-and P-based lubricant additives by combined first principles and experimental analysis. RSC Adv 6:47753–47760. https://doi.org/10.1039/C6RA07545B

  40. Feng ZJ, Feng LL, Xu JN, Lu Y (2013) Tribological characteristics of vulcanization isobutylene additives in ester oil. Lubr Eng 38:49–52. https://doi.org/10.3969/j.issn.0254-0150.2013.06.010

  41. Wang H, Zhao ZJ (2006) Study on tribological properties of sulfurous extreme pressure and antiwear additives in rap oil. Lubr Eng 08:84–86. https://doi.org/10.3969/j.issn.0254-0150.2006.08.025

  42. Shen J, Cheng J, Jiang H, Li J, Gachot C (2018) Study on the relationship between extreme pressure properties and component contents of high pressured sulfurized isobutylene. Ind Lubr Tribol 90:527–531. https://doi.org/10.1108/ILT-07-2017-0187

  43. Sukirno, Ningsih YR (2017) Utilization of sulphurized palm oil as cutting fluid base oil for broaching process. IOP Conf Ser Earth Environ Sci 60:012008. https://doi.org/10.1088/1742-6596/755/1/011001

  44. Plaza S, Celichowski G, Margielewski L, Leniak S (2000) Flash thermolysis of dibenzyl and diphenyl disulphides. Wear 237:295–299. https://doi.org/10.1016/S0043-1648(99)00358-0

  45. Kawada S, Watanabe S, Tadokoro C, Sasaki S (2018) Effects of alkyl chain length of sulfate and phosphate anion-based ionic liquids on tribochemical reactions. Tribol Lett 66:1–9. https://doi.org/10.1007/s11249-017-0962-1

  46. Pejaković V, Tomastik C, Dörr N, Kalin M (2016) Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribol Int 97:234–243. https://doi.org/10.1016/j.triboint.2016.01.034

  47. Ma R, Zhao Q, Zhang E, Zheng D, Li W, Wang X (2020) Synthesis and evaluation of oil-soluble ionic liquids as multifunctional lubricant additives. Tribol Int 151:106446. https://doi.org/10.1016/j.triboint.2020.106446

  48. Maruda RW, Krolczyk GM, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tool Manuf 100:81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

  49. Maruda RW, Krolczyk GM, Wojciechowski S, Powalka B, Klos S, Szczotkarz N, Matuszak M, Khanna N (2020) Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. TriboL Int 148:106334. https://doi.org/10.1016/j.triboint.2020.106334

  50. Maruda RW, Krolczyk GM, Wojciechowski S, Zak K, Habrat W, Nieslony P (2018) Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. J Mech Sci Technol 32:1585–1591. https://doi.org/10.1016/j.triboint.2020.106334

  51. Maruda RW, Krolczyk GM, Feldshtein E, Nieslony P, Tyliszczak B, Pusavec F (2017) Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372:54–67. https://doi.org/10.1016/j.wear.2016.12.006

  52. Maruda RW, Krolczyk GM, Nieslony P, Wojciechowski S, Michalski M, Legutko S (2016) The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J Mech Sci Technol 24:107–115. https://doi.org/10.1016/j.jmapro.2016.08.006

  53. Bihan G, A PB, S WD (2016) The chemistry, mechanism and function of tricresyl phosphate (TCP) as an anti‐wear lubricant additive. Lubr Sci 28:257–265. https://doi.org/10.1002/ls.1327

  54. Guan B, Pochopien BA, Wright DS (2016) The chemistry, mechanism and function of tricresyl phosphate (TCP) as an anti‐wear lubricant additive. Lubr Sci 28:257–265. https://doi.org/10.1002/ls.1327

  55. Barros-Bouchet DM, Righi MC, Philippon D, Mambingo-Doumbe S, Le-Mogne T, Martin JM, Bouffet A (2015) Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv 5:49270–49279. https://doi.org/10.1039/c5ra00721f

  56. Philippon D, de Barros-Bouchet MI, Mogne TL, Gresser E, Martin JM (2007) Experimental simulation of phosphites additives tribochemical reactions by gas phase lubrication. Tribol-Mater Surf Int 1:113–123. https://doi.org/10.1179/175158408X273586

  57. Fu X, Sun L, Zhou X, Li J, Fan B, Ren T (2015) Tribochemical behaviors of phosphite esters and their combinations with alkyl amines. Appl Surf Sci 357:1163–1170. https://doi.org/10.1016/j.apsusc.2015.09.156

  58. Bu JM, Yan JC, Bai XF, Ren TH, Zhao YD (2012) The tribological characteristics and mechanism of several P-N type extreme pressure and antiwear additives in polyoxyethylene glycol. Tribology 32:113–118. https://doi.org/10.16078/j.tribology.2012.02.001

  59. Sun LG, Wang JB, Fan FQ, Wang ZS, Luo HT (2017) Research on tribological properties and mechanism of phosphites. Synth Lubr 44:1–5. https://doi.org/10.3969/j.issn.1672-4364.2017.02.001

  60. Hugh S (2008) Low‐and zero‐sulphated ash, phosphorus and sulphur anti‐wear additives for engine oils. Lubr Sci 20:103–136. https://doi.org/10.1002/ls.57

  61. Liu XJ, Chen LG, Cao SH, Yang X, Xiang S, Zhu LY (2013) Synthesis of nitrogen-containing phosphate and its extreme pressure and antiwear properties. Lubr Eng 38:88–91. https://doi.org/10.3969/j.issn.0254-0150.2013.09.020

  62. Qiao YL, Chi JC, Xu BS, Ma SN (2002) Study on the tribological performance and mechanism of phosphorus-nitrogen lube oil additives. Pet Process Petrochem 33:13–16. https://doi.org/10.3969/j.issn.1005-2399.2002.03.004

  63. Zhang L, Hu WJ, Li DD, Li JS (2018) Preparation and tribological performance evaluation of a novel kind of additive containing nitrogen heterocyclic ring. Mater Prot 51:11–14. https://doi.org/10.16577/j.cnki.42-1215/tb.2018.06.004

  64. Sun ZW, Yan F, Cao FY (2019) Synthesis of acid phosphate amine salt from oleic acid and its tribological properties. China Oils Fats 44:53–58. https://doi.org/10.3969/j.issn.1003-7969.2019.07.012

  65. Yan JC, Bai XF, Li J, Ren TH, Zhao YD (2014) The tribochemical study of novel phosphorous-nitrogen (PN) type phosphoramidate additives in water. Ind Lubr Tribol 66:346–352. https://doi.org/10.1108/ilt-12-2011-0111

  66. Liu JY, Chen Y, Chen XW (2005) Tribological behavior of zinc dialkyl-dithiophosphate (ZDDP) in rapeseed oil (RO). J Chang'an Univ Nat Sci Ed 25:81–83+87. https://doi.org/10.3321/j.issn:1671-8879.2005.04.020

  67. Spikes H (2004) The history and mechanisms of ZDDP. Tribol Lett 17:469–489. https://doi.org/10.1023/B:TRIL.0000044495.26882.b5

  68. Joanna D, Neal M, Joe R, Hugh S (2019) Film thickness and friction of ZDDP tribofilms. Tribol Lett 67:1–15. https://doi.org/10.1007/s11249-019-1148-9

  69. Wu XF, Chang He Li, Zhou ZM, Nie XL, Chen Y, Zhang YB, Cao HJ, Liu B, Zhang NQ, Said Z (2021) Circulating purification of cutting fluid: an overview. Int J Adv Manuf Tech 1–36. https://doi.org/10.1007/s00170-021-07854-1

  70. Nicholls MA, Do T, Norton PR, Kasrai M, Bancroft GM (2005) Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol Int 38:15–39. https://doi.org/10.1016/j.triboint.2004.05.009

  71. Vrček A, Hultqvist T, Baubet Y, Marklund P, Larsson R (2019) Micro-pitting damage of bearing steel surfaces under mixed lubrication conditions: Effects of roughness, hardness and ZDDP additive. Tribol Int 138:239–249. https://doi.org/10.1016/j.triboint.2019.05.038

  72. Wen XH, Wang XY (2005) Theoretical study on the structure and lubrication mechanism of zinc dialkydithiophosphate (ZDDP). Nat Sci J Xiangtan Univ 27:77–80. https://doi.org/10.3969/j.issn.1000-5900.2005.03.016

  73. Kim B, Mourhatch R, Aswath PB (2010) Properties of tribofilms formed with ashless dithiophosphate and zinc dialkyl dithiophosphate under extreme pressure conditions. Wear 268:579–591. https://doi.org/10.1016/j.wear.2009.10.004

  74. Bahari A, Lewis R, Slatter T (2018) Friction and wear phenomena of vegetable oil–based lubricants with additives at severe sliding wear conditions. Tribol Trans 61:207–219. https://doi.org/10.1080/10402004.2017.1290858

  75. Shafi WK, Charoo MS (2020) Antiwear and extreme pressure properties of hazelnut oil blended with ZDDP. Ind Lubr Tribol 73:297–307. https://doi.org/10.1108/ILT-06-2020-0217

  76. Najman MN, Kasrai M, Bancroft GM (2004) Chemistry of antiwear films from ashless thiophosphate oil additives. Tribol Lett 17:217–229. https://doi.org/10.1023/B:TRIL.0000032448.77085.f4

  77. Gong QY, He WR, Liu WM (2003) The tribological behavior of thiophosphates as additives in rapeseed oil. Tribol Int 36:733–738. https://doi.org/10.1016/S0301-679X(03)00053-7

  78. Wu YX, Li WM, Wang XB (2015) Tribological behaviors of p-extreme pressure and anti-wear additives in ester base oil. Acta Pet Sin 31:1122–1128. https://doi.org/10.3969/j.issn.1001-8719.2015.05.014

  79. Jiang ZQ, Feng YH, Fang JH, Liu P, Chen BS, Gu KC, Jiang W (2018) Tribological characteristics of lubricating oils with ammonium thiophosphate under electromagnetic field. J Mater Eng 46:98–103. https://doi.org/10.11868/j.issn.1001-4381.2017.000019

  80. Jing H, Wang JH, Chen LG, Wang XB (2005) Study on the tribological behavior of nano-copper additive complexing with ammonium thiophsphonate in lube oil. Pet Process Petrochem 36:32–36. https://doi.org/10.3969/j.issn.1005-2399.2005.07.008

  81. Li JS, Rao WQ, Zen XQ (2002) Tribologcal behavior of an S-P containing benzotriazole derivative as an additive in rapeseed oil. Tribology 22:122–125. https://doi.org/10.3321/j.issn:1004-0595.2002.02.010

  82. He ZY, Xiong LP, Zeng XQ, Ren TH (2005) Synthesis and tribology study of bi-alkoxy mono-thiophosphate triazine derivatives as additives in rapeseed oil. Chin Sci Bull 50:1174–1179. https://doi.org/10.1007/BF03183689

  83. Xiong LP, Liu H, He ZY (2005) The tribological property of novel triazine derivative. J Nanchang Univ Nat Sci 29:533–535. https://doi.org/10.3969/j.issn.1006-0464.2005.06.007

  84. Wang T, Dai K, Wang Z, Peng H, Gao X (2017) A quantitative structure tribo-ability relationship model for the antiwear properties of N/S-containing heterocyclic lubricant additives using back propagation neural network. Tribology 37:495–500. https://doi.org/10.16078/j.tribology.2017.04.011

  85. Gao T, Zhang Y, Li C, Wang Y, An Q, Liu B, Said Z, Sharma S (2021) Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci Rep UK 11:1–14. https://doi.org/10.1038/s41598-021-02071-y

  86. Huang B, Changhe L, Zhang Y, Wenfeng D, Min Y, Yuying Y, Han Z, Xuefeng X, Dazhong W, Debnath S (2021) Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin J Aeronaut 34:1–17. https://doi.org/10.1016/j.cja.2020.07.004

  87. Yang M, Li C, Luo L, Li R, Long Y (2021) Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int Commun Heat Mass 125:105317. https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

  88. Sui MH, Chang He Li, Wu WT, Yang M, Ali HM, Zhang YB, Jia DZ, Hou YL, Li RZ, Cao HJ (2021) Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. J Therm Sci Eng Appl 13:051001. https://doi.org/10.1115/1.4049982

  89. Gao T, Chang He Li, Yang M, Yan Bin Zhang, Jia DZ, Ding WF, Debnath S, Yu TB, Said Z, Wang J (2021) Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Process Tech 290:116976. https://doi.org/10.1016/j.jmatprotec.2020.116976

  90. Gao T, Li CH, Jia DZ, Zhang YB, Yang M, Wang XM, Cao HJ, Li RZ, Ali HM, Xu XF (2020) Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. J Clean Prod 277:123328. https://doi.org/10.1016/j.jclepro.2020.123328

  91. Zhang YB,  Li HN, Li CH, Huang CZ, Ali HM, Xu XF, Mao C, Ding WF, X Cui, Yang M (2021) Nano-enhanced biolubricant in sustainable manufacturing: from process ability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

  92. Duan ZJ, Li CH, Ding WF, Zhang YB, Yang M, Gao T, Cao H, Xu XF, Wang DZ, Mao C (2021) Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin J Mech Eng 34:1–35. https://doi.org/10.1186/s10033-021-00536-9

  93. Alves SM, Mello VS, Faria EA, Camargo APP (2016) Nanolubricants developed from tiny CuO nanoparticles. Tribol Int 263–271. https://doi.org/10.1016/j.triboint.2016.01.050

  94. Zareh-Desari B, Davoodi B (2016) Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes. J Clean Prod 135:1198–1209. https://doi.org/10.1016/j.jclepro.2016.07.040

  95. Mello VS, Trajano MF, Guedes AEDS, Alves SM (2020) Comparison between the action of nano-oxides and conventional EP additives in boundary lubrication. Lubricants 8:54. https://doi.org/10.3390/lubricants8050054

  96. Ren B, Gao L, Li M, Zhang S, Ran X (2020) Tribological properties and anti-wear mechanism of ZnO@ graphene core-shell nanoparticles as lubricant additives. Tribol Int 144:106114. https://doi.org/10.1016/j.triboint.2019.106114

  97. Thampi AD, Prasanth MA, Anandu AP, Sneha E, Sasidharan B, Rani S (2021) The effect of nanoparticle additives on the tribological properties of various lubricating oils – Review. Mater Today Proc 47:4919–4924. https://doi.org/10.1016/j.matpr.2021.03.664

  98. Xiong S, Zhang B, Luo S, Wu H, Zhang Z (2021) Preparation, characterization, and tribological properties of silica-nanoparticle-reinforced BN-co-doped reduced graphene oxide as a multifunctional additive for enhanced lubrication. Friction 9:239–249. https://doi.org/10.1007/s40544-019-0331-1

  99. Wu H, Yin S, Wang L, Du Y, Yang Y, Shi J, Wang H (2021) Investigation on the robust adsorption mechanism of alkyl-functional boric acid nanoparticles as high performance green lubricant additives. Tribol Int 157:106909. https://doi.org/10.1016/j.triboint.2021.106909

  100. Wu C, Yang K, Chen Y, Ni J, Yao L, Li X (2021) Investigation of friction and vibration performance of lithium complex grease containing nano-particles on rolling bearing. Tribol Int 155:106761. https://doi.org/10.1016/j.triboint.2020.106761

  101. Mujtaba M, Kalam M, Masjuki H, Soudagar MEM, Khan HM, Fayaz H, Farooq M, Gul M, Ahmed W, Ahmad M (2021) Effect of palm-sesame biodiesel fuels with alcoholic and nanoparticle additives on tribological characteristics of lubricating oil by four ball tribo-tester. Alexandria Eng J 60:4537–4546. https://doi.org/10.1016/j.aej.2021.03.017

  102. Xie H, Jiang B, He J, Xia X, Pan F (2016) Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol Int 93:63–70. https://doi.org/10.1016/j.triboint.2015.08.009

  103. Cui X, Chang He Li, Zhang YB, Jia DZ, Zhao YJ, Li RZ, Cao H (2019) Tribological properties under the grinding wheel and workpiece interface by using graphene nanofluid lubricant. Int J Adv Manuf Tech 104:3943–3958. https://doi.org/10.1007/s00170-019-04129-8

  104. Kumar N, Saini V, Bijwe J (2020) Performance properties of lithium greases with PTFE particles as additive: controlling parameter-size or shape? Tribol Int 148:106302. https://doi.org/10.1016/j.triboint.2020.106302

  105. Huang XB, Yang BT, Wang YQ (2019) A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling. Appl Math Model 72:623–649. https://doi.org/10.1016/j.apm.2019.03.008

  106. Hwang Y, Lee C, Choi Y, Cheong S, Kim D, Lee K, Lee J, Kim SH (2011) Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J Mech Sci Technol 25:2853–2857. https://doi.org/10.1007/s12206-011-0724-1

  107. Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R, Lapray C (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332:1256–1261. https://doi.org/10.1016/j.wear.2015.02.038

  108. Demas NG, Erck RA, Lorenzo-Martin C, Ajayi OO, Fenske GR (2017) Experimental evaluation of oxide nanoparticles as friction and wear improvement additives in motor oil. J Nanomater 1–12. https://doi.org/10.1155/2017/8425782

  109. Verma V, Tiwari H (2021) Role of filler morphology on friction and dry sliding wear behavior of epoxy alumina nanocomposites. Proc Inst Mech Eng Part J J Eng Tribol 235:1614–1626. https://doi.org/10.1177/1350650120970433

  110. Bondarev AV, Kovalskii AM, Firestein KL, Loginov PA, Sidorenko DA, Shvindina NV, Sukhorukova IV, Shtansky DV (2018) Hollow spherical and nanosheet-base BN nanoparticles as perspective additives to oil lubricants: Correlation between large-scale friction behavior and in situ TEM compression testing. Ceram Int 44:6801–6809. https://doi.org/10.1016/j.ceramint.2018.01.101

  111. Ren BJ, Gao L, Li MJ, Zhang SD, Ran X (2020) Tribological properties and anti-wear mechanism of ZnO@ graphene core-shell nanoparticles as lubricant additives. Tribol Int 144:106114. https://doi.org/10.1016/j.triboint.2019.106114

  112. Fan XQ, Li W, Fu HM, Zhu MH, Wang LP, Cai ZB, Liu JH, Li H (2017) Probing the function of solid nanoparticle structure under boundary lubrication. ACS Sustain Chem Eng 5:4223–4233. https://doi.org/10.1021/acssuschemeng.7b00213

  113. Mao JX, Hu JQ, Yang SZ, Xu X, Guo L (2019) Study on the effect of structure on anti-wear and antifriction properties of nano-tungsten disulfide. Appl Chem Ind 48:2581–2584. https://doi.org/10.3969/j.issn.1671-3206.2019.11.013

  114. Joly-Pottuz L, Martin J, Vacher B, Igarashi J (2008) Wear mechanisms of steel under boundary lubrication in presence of carbon black and graphite nano-onions particles. SAE Tech Pap Ser 01:2461. https://doi.org/10.4271/2008-01-2461

  115. Ewen JP, Gattinoni C, Thakkar FM, Morgan N, Spikes HA, Dini D (2016) Nonequilibrium molecular dynamics investigation of the reduction in friction and wear by carbon nanoparticles between iron surfaces. Tribol Lett 63:1–15. https://doi.org/10.1007/s11249-016-0722-7

  116. Matsumoto N, Mistry KK, Kim JH, Eryilmaz OL, Erdemir A, Kinoshita H, Ohmae N (2012) Friction reducing properties of onion-like carbon based lubricant under high contact pressure. Tribol Mater Surf Interfaces 6:116–120. https://doi.org/10.1179/1751584X12Y.0000000014

  117. Joly-Pottuz L, Vacher B, Ohmae N, Martin JM, Epicier T (2008) Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol Lett 30:69–80. https://doi.org/10.1007/s11249-008-9316-3

  118. Bhaumik S, Datta S, Pathak SD (2017) Analyses of tribological properties of castor oil with various carbonaceous micro-and nano-friction modifiers. J Tribol ASME 139. https://doi.org/10.1115/1.4036379

  119. Dai W, Kheireddin B, Gao H, Liang H (2016) Roles of nanoparticles in oil lubrication. Tribol Int 102:88–98. https://doi.org/10.1016/j.triboint.2016.05.020

  120. Chen XC, Li JJ (2020) Superlubricity of carbon nanostructures. Carbon 158:1–23. https://doi.org/10.1016/j.carbon.2019.11.077

  121. Xuan Y, Liu Y, Zhao XC, Cheng JW, Li YJ, Li JG (2010) The investigation of the tribological properties of AlOOH and Fe_3O_4 nanoparticles as additives in liquid paraffin. Tribology 30:209–216. https://doi.org/10.16078/j.tribology.2010.02.008

  122. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425. https://doi.org/10.1038/nature12385

  123. Shtansky DV, Firestein KL, Golberg DV (2018) Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 10:17477–17493. https://doi.org/10.1039/C8NR05027A

  124. Kumar N, Saini V, Bijwe J (2020) Tribological Investigations of Nano and Micro-Sized Graphite Particles as an Additive in Lithium-Based Grease. Tribol Int 68:1–13. https://doi.org/10.1007/s11249-020-01362-1

  125. Onodera T, Morita Y, Suzuki A, Koyama M, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Dassenoy F (2009) A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J Phys Chem B 113:16526–16536. https://doi.org/10.1021/jp9069866

  126. Li QY, Lee CG, Carpick RW, Hone J (2010) Substrate effect on thickness‐dependent friction on graphene. Phys Status Solidi B 247:2909–2914. https://doi.org/10.1002/pssb.201000555

  127. Smolyanitsky A, Killgore JP, Tewary VK (2012) Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85:035412. https://doi.org/10.1103/PhysRevB.85.035412

  128. Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Frictional characteristics of atomically thin sheets. Science 328:76–80. https://doi.org/10.1126/science.1184167

  129. Xiao HP, Dai W, Kan YW, Clearfield A, Liang H (2015) Amine-intercalated α-zirconium phosphates as lubricant additives. Appl Surf Scie 329:384–389. https://doi.org/10.1016/j.apsusc.2014.12.061

  130. Greco A, Mistry K, Sista V, Eryilmaz O, Er De Mir A (2011) Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271:1754–1760. https://doi.org/10.1016/j.wear.2010.11.060

  131. Joly-Pottuz L, Martin J-M, Dassenoy F, Belin M, Montagnac G, Reynard B, Fleischer N (2006) Pressure-induced exfoliation of inorganic fullerene-like WS 2 particles in a Hertzian contact. J Appl Geophys 99:023524. https://doi.org/10.1063/1.2165404

  132. Lahouij I, Dassenoy F, de Knoop L, Martin J-M, Vacher B (2011) In situ TEM observation of the behavior of an individual fullerene-like MoS 2 nanoparticle in a dynamic contact. Tribol Lett 42:133–140. https://doi.org/10.1007/s11249-011-9755-0

  133. Dassenoy F (2019) Nanoparticles as additives for the development of high performance and environmentally friendly engine lubricants. Tribol Online 14:237–253. https://doi.org/10.2474/trol.14.237

  134. Jenei IZ, Dassenoy FJTL (2017) Friction coefficient measured on a single WS2 nanoparticle: an in situ transmission electron microscope experiment. Tribol Lett 65:86. https://doi.org/10.1007/s11249-017-0868-y

  135. Rabaso P, Ville F, Dassenoy F, Diaby M, Afanasiev P, Cavoret J, Vacher B, Le Mogne T (2014) Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320:161–178. https://doi.org/10.1016/j.wear.2014.09.001

  136. Lahouij I, Vacher B, Martin J-M, Dassenoy F (2012) IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear 296:558–567. https://doi.org/10.1016/j.wear.2012.07.016

  137. Tannous J, Dassenoy F, Bruhács A, Tremel W (2010) Synthesis and tribological performance of novel Mo x W 1− x S 2 (0≤ x≤ 1) inorganic fullerenes. Tribol Lett 37:83–92. https://doi.org/10.1007/s11249-009-9493-8

  138. Alves SM, Mello VS, Sinatora A (2018) Nanolubrication mechanisms: influence of size and concentration of CuO nanoparticles. Mater Perform Charact 7:226–241. https://doi.org/10.1520/MPC20170064

  139. Liu XG, Xu N, Li WM, Zhang M, Chen LF, Lou WJ, Wang XB (2017) Exploring the effect of nanoparticle size on the tribological properties of SiO2/polyalkylene glycol nanofluid under different lubrication conditions. Tribol Int 109:467–472. https://doi.org/10.1016/j.triboint.2017.01.007

  140. Zhao XC, Liu Y, Wang DL, Li QF (2006) Effect of the Particle Size on Tribological Properties of Nanometer Fe3O4 as Lubricating Oil Additives. Lubr Eng 61–63. https://doi.org/10.3969/j.issn.0254-0150.2006.01.019

  141. Zhang XP, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Guo SM, Liu GT, Zhang NQ (2017) Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532–545. https://doi.org/10.1016/j.precisioneng.2016.09.016

  142. Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 203–210. https://doi.org/10.1155/2015/276753

  143. Peng DX, Chen CH, Kang Y, Chang YP, Chang SY (2010) Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind Lubr Tribol 62:111–120. https://doi.org/10.1108/00368791011025656

  144. Wo HZ, Hu KH, Hu XG (2004) Tribological properties of MoS2 nanoparticles as additive in a machine oil. Tribology 24:33–37. https://doi.org/10.3321/j.issn:1004-0595.2004.01.008

  145. Reeves CJ, Menezes PL, Lovell MR, Jen TC (2013) The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol Lett 51:437–452. https://doi.org/10.1007/s11249-013-0182-2

  146. Akbulut M (2012) Nanoparticle-based lubrication systems. J Powder Metall Min 1:1–3. https://doi.org/10.4172/2168-9806.1000e101

  147. Wang Y, Sun Y, Gong S, Cai Z, Fu J (2020) Influence of silver nanoparticles on settling of suspended sediments. J Mol Liq 299:112135. https://doi.org/10.1016/j.molliq.2019.112135

  148. Van Teijlingen A, Davis SA, Hall SR (2020) Size-dependent melting point depression of nickel nanoparticles. Nanoscale Adv 2:2347–2351. https://doi.org/10.1039/D0NA00153H

  149. Cui Z, Ji B, Fu Q, Duan H, Xue Y, Li Z (2020) Research on size dependent integral melting thermodynamic properties of Cu nanoparticles. J Chem Thermodyn 149:106148. https://doi.org/10.1016/j.jct.2020.106148

  150. Zhang X, Li W, Wu D, Deng Y, Shao J, Chen L, Fang D (2018) Size and shape dependent melting temperature of metallic nanomaterials. J Phys Condens Mat 31:075701. https://doi.org/10.1088/1361-648X/aaf54b

  151. Yin QA, Li CH, Dong L, Bai XF, Zhang YB, Yang M, Jia DZ, Li RZ, Liu ZQ (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Precis Eng Manuf Green Technol 1–19. https://doi.org/10.1007/s40684-021-00318-7

  152. Yang M, Li CH, Zhang YB, Wang YG, Li BK, Jia DZ, Hou YL, Li RZ (2017) Research on microscale skull grinding temperature field under different cooling conditions. Appl Therm Eng 126:525–537. https://doi.org/10.1016/j.applthermaleng.2017.07.183

  153. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Jia DZ, Hou YL, Mao C (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

  154. Li BK, Li CH, Zhang YB, Wang YG, Jia DZ, Yang M, Zhang NQ, Wu QD, Han ZG, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

  155. Guo SM, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Zhang XP, Liu GT (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076. https://doi.org/10.1016/j.jclepro.2016.10.073

  156. Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf 13:111–116. https://doi.org/10.1007/s12541-012-0015-5

  157. Chu B, Singh E, Koratkar N, Samuel J (2013) Graphene-enhanced environmentally-benign cutting fluids for high-performance micro-machining applications. J Nanosci Nanotechnol 13:5500–5504. https://doi.org/10.1166/jnn.2013.7538

  158. Wu H, Zhao JW, Xia WZ, Cheng XW, He AS, Yun JH, Wang LZ, Huang H, Jiao SH, Huang L, Zhang SQ, Jiang ZY (2017) A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribol Int 109:398–408. https://doi.org/10.1016/j.triboint.2017.01.013

  159. Gulzar M, Masjuki HH, Varman M, Kalam MA, Mufti RA, Zulkifli NWM, Yunus R, Zahid R (2015) Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol Int 88:271–279. https://doi.org/10.1016/j.triboint.2015.03.035

  160. Ratoi M, Niste VB, Zekonyte J (2014) WS 2 nanoparticles–potential replacement for ZDDP and friction modifier additives. RSC Adv 4:21238–21245. https://doi.org/10.1039/C4RA01795A

  161. Wan QM, Jin Y, Sun PC, Ding YL (2015) Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng 102:1038–1045. https://doi.org/10.1016/j.proeng.2015.01.226

  162. Arumugam S, Sriram G (2014) Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proc Inst Mech Eng Part J J Eng 228:1308–1318. https://doi.org/10.1177/1350650114535384

  163. Joly-Pottuz L, Matsumoto N, Kinoshita H, Vacher B, Belin M, Montagnac G, Martin JM, Ohmae N (2008) Diamond-derived carbon onions as lubricant additives. Tribol Int 41:69–78. https://doi.org/10.1016/j.triboint.2007.05.001

  164. Duan ZJ, Yin QA, Li CH, Dong L, Bai XF, Zhang YB, Yang M, Jia DZ, Li RZ, Liu ZQ (2020) Milling force and surface morphology of 45 steel under different Al 2 O 3 nanofluid concentrations. Int Adv Manuf Tech 107:1277–1296. https://doi.org/10.1007/s00170-020-04969-9

  165. Shafi WK, Raina A, Haq MIU (2018) Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime. Ind Lubr Tribol 70:865–871. https://doi.org/10.1108/ILT-06-2017-0166

  166. Huang J-S, Sun H, Wang X, Chen B-Q, Yao B (2021) Study on dispersion stability and friction characteristics of C60 nanomicrosphere lubricating additives for improving cutting conditions in manufacturing process. Math Probl Eng. https://doi.org/10.1155/2021/2724743

  167. Srinivas V, Thakur R, Jain A (2017) Antiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticles. Tribol Trans 60:12–19. https://doi.org/10.1080/10402004.2016.1142034

  168. Thottackkad MV, Rajendrakumar P, Nair KP (2014) Experimental studies on the tribological behaviour of engine oil (SAE15W40) with the addition of CuO nanoparticles. Ind Lubr tribol 22:289–297. https://doi.org/10.1108/ILT-01-2012-0006

  169. Lu HS, Tang WW, Liu X, Wang BG, Huang ZY (2017) Oleylamine-modified carbon nanoparticles as a kind of efficient lubricating additive of polyalphaolefin. J Mater Sci Lett 52:4483–4492. https://doi.org/10.1007/s10853-016-0694-x

  170. Gao T, Li C, Zhang YB, Yang M, Jia DZ, Jin T, Hou Y, Li RZ (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Lett 131:51–63. https://doi.org/10.1016/j.triboint.2018.10.025

  171. Wu LL, Zhang YJ, Yang GB, Zhang SM, Yu LG, Zhang PY (2016) Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv 6:69836–69844. https://doi.org/10.1039/C6RA10042B

  172. Alves SM, Barros BS, Trajano MF, Ribeiro KSB, Moura E (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36. https://doi.org/10.1016/j.triboint.2013.03.027

  173. Trajano MF, Moura EIF, Ribeiro KSB, Alves SMJMR (2014) Study of oxide nanoparticles as additives for vegetable lubricants. Mater Res Ibero Am J 17(15):1124–1128. https://doi.org/10.1590/1516-1439.228213

  174. Mello VS, Faria EA, Alves SM, Scandian C (2020) Enhancing Cuo nanolubricant performance using dispersing agents. Tribol Int 150:106338. https://doi.org/10.1016/j.triboint.2020.106338

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (Grant No. 2020YFB2010500), the National Natural Science Foundation of China (Grant Nos. 51975305 and 51905289), the Major Science and Technology Innovation Engineering Projects of Shandong Province (Grant No. 2019JZZY020111), and Natural Science Foundation of Shandong Province (Grant Nos. ZR2020KE027, ZR2020ME158, and ZR2019PEE008).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zongming Zhou, Xiaolin Nie, Yun Chen, Huajun Cao, Bo Liu, Naiqing Zhang, Zafar Said, Sujan Debnath, Muhammad Jamil, Hafiz Muhammad Ali, and Shubham Sharma. The first draft of the manuscript was written by Haogang Li, Yanbin Zhang, and Changhe Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Changhe Li.

Ethics declarations

The authors declare that this manuscript was not submitted to more than one journal for simultaneous consideration. Also, the submitted work is original and has not been published elsewhere in any form or language.

Consent to participate and publish

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, Y., Li, C. et al. Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. Int J Adv Manuf Technol 120, 1–27 (2022). https://doi.org/10.1007/s00170-021-08614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08614-x

Keywords

Navigation