Skip to main content
Log in

Optimization of thick sheet clinching tools using principal component analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new optimization method based on the principal component analysis (PCA) is presented for the identification of geometry parameters in tool design for mechanical clinching process of thick sheets. By applying PCA in joining, numerous dependent variables relevant for quality can be approximated with a very low number of statistical eigenmodes. Subsequently, the eigenmodes are used instead of the actual dependent variable for mathematically characterising the entire joint. This method offers the possibility of forming a direct functional relation between the tool parameters and the adherend geometries. Thus, the quality of a joint can be optimized by a generic algorithm (GA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. CIRP Ann Manuf Technol 52(2):521–542. https://doi.org/10.1016/S0007-8506(07)60202-9

    Article  Google Scholar 

  2. Israel M, Mauermann R, Schellnock J (2013) Thick sheet clinching: Joining up to 20 mm total thickness. Adv Shipping Ocean Eng (ASOE)(No.1):1–10.

  3. Groche P, Wohletz S, Brenneis M, Pabst C, Resch F (2014) Joining by forming-a review on joint mechanisms, applications and future trends. J Mater Process Technol 214(10):1972–1994. https://doi.org/10.1016/j.jmatprotec.2013.12.022

    Article  Google Scholar 

  4. Neugebauer R, Jesche F, Royer L (2005) Automatic optimization of joining by forming by numerical simulation. Production Eng (XII/2):121–4.

  5. Oudjene M, Ben-Ayed L (2008) On the parametrical study of clinch joining of metallic sheets using the Taguchi method. Eng Struct 30(6):1782–1788. https://doi.org/10.1016/j.engstruct.2007.10.017

    Article  Google Scholar 

  6. Oudjene M, Ben-Ayed L, Delamézière A, Batoz J-L (2009) Shape optimization of clinching tools using the response surface methodology with moving least-square approximation. J Mater Process Technol 209(1):289–296. https://doi.org/10.1016/j.jmatprotec.2008.02.030

    Article  Google Scholar 

  7. Lambiase F, Di Ilio A (2013) Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. Procedia CIRP 12:163–168. https://doi.org/10.1016/j.procir.2013.09.029

    Article  Google Scholar 

  8. Lambiase F (2013) Influence of process parameters in mechanical clinching with extensible dies. Int J Adv Manuf Technol 66(9-12):2123–2131. https://doi.org/10.1007/s00170-012-4486-4

    Article  Google Scholar 

  9. Roux E, Bouchard P-O (2013) Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. J Mater Process Technol 213(7):1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  10. Drossel WG, Falk T, Israel M, Jesche F (2014) Unerring planning of clinching processes through the use of mathematical methods. KEM 611-612:1437–1444

    Article  Google Scholar 

  11. Landgrebe D, Mauermann R, Kropp T (2017) Clinching - an innovative joining technology for trucks, 5th International Conference on Steels in Cars and Trucks SCT 2017, Noordwijkerhout, Amsterdam.

  12. Wang M-h, G-q X, Li Z, Wang J-q (2017) Shape optimization methodology of clinching tools based on Bezier curve. Int J Adv Manuf Technol 24(1):2267–2280. https://doi.org/10.1007/s00170-017-0987-5

    Article  Google Scholar 

  13. Drossel W-G, Israel M, Falk T (2012) Robustness evaluation and tool optimization in forming applications, 9. Weimar Optimization and Stochastic Days 2012, Weimar.

  14. Hahn O, Klemens U (1996) Fügen durch Umformen, Nieten und Durchsetzfügen: Innovative Verbindungsverfahren für die Praxis. Verlag und Vertriebsgesellschaft Stahlanwendung, Düsseldorf.

  15. Deutsches Institut für Normung e.V (2013) Fertigungsverfahren Fügen, Teil 5: Fügen durch Umformen, Einordnung, Unterteilung, Begriffe. Beuth Verlag GmbH, Berlin

    Google Scholar 

  16. Jolliffe IT (2004) Principal component analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  17. Saltelli A (2007) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, Hoboken

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schwarz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of

interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, C., Kropp, T., Kraus, C. et al. Optimization of thick sheet clinching tools using principal component analysis. Int J Adv Manuf Technol 106, 471–479 (2020). https://doi.org/10.1007/s00170-019-04512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04512-5

Keywords

Navigation