Skip to main content
Log in

An advanced FE-modeling approach to improve the prediction in machining difficult-to-cut material

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Since the 1960s, the Inconel Alloy 718 has been a standard nickel-based superalloy due to its high strength, balanced mechanical properties, and strong corrosion resistance at relatively low costs and has been widely used in critical aircraft engine components. With the aim of improving productivity and product quality by implementing advanced tools and new process designs, models such as the FE model are utilized to predict the machining performance such as the cutting forces, the tool life, and the surface integrity. In the research area of FEM chip formation simulation, the influence of flank wear on predictions has not been investigated, especially not on the underestimation of the cutting normal force. In this paper, a 2D FEM chip formation model with the coupled Eulerian-Lagrangian (CEL) method has been built to predict cutting forces as well as other material loadings (Brinksmeier et al. Procedia CIRP 13:429–434, 2014; Buchkremer and Klocke Wear 376-377:1156–1163, 2017) in the machining of Direct Aged 718. In order to validate the performance of the FE model, fundamental investigations have been performed in orthogonal cutting with different cutting parameters. Two kinds of cemented carbide cutting tools with different cobalt contents have been applied to achieve different tool wear behaviors. Moreover, the underestimation of the cutting normal force by FEM chip formation simulation has been investigated and solved in consideration of the flank wear. The introduced FE-modeling approach shows precise predictions in terms of the cutting forces and the chip formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus V (2014) 6.14 documentation. Dassault Systemes Simulia Corporation 651

  2. Agmell M, Bushlya V, Laakso SVA, Ahadi A, Ståhl JE (2018) Development of a simulation model to study tool loads in pcbn when machining aisi 316l. Int J Adv Manuf Technol 96(5-8):2853–2865. https://doi.org/10.1007/s00170-018-1673-y

    Article  Google Scholar 

  3. Arrazola PJ, Aristimuno P, Soler D, Childs T (2015) Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography. CIRP Ann 64(1):57–60. https://doi.org/10.1016/j.cirp.2015.04.061

    Article  Google Scholar 

  4. Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52(1):31–42. https://doi.org/10.1016/j.ijmecsci.2009.10.001

    Article  Google Scholar 

  5. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  6. Biermann D, Hollmann F (2018) Thermal effects in complex machining processes: Final report of the DFG priority programme. In: Lecture Notes in Production Engineering. Springer International Publishing and Imprint, vol 1480. Springer, Cham

  7. Biermann D, Oezkaya E (2017) CFD simulation for internal coolant channel design of tapping tools to reduce tool wear. CIRP Ann 66(1):109–112. https://doi.org/10.1016/j.cirp.2017.04.024

    Article  Google Scholar 

  8. Binder M (2017) Mechanismenbasierte Verschleißsimulation zur integrierten Werkzeug- und Prozessauslegung. Dissertation RWTH Aachen and IIF - Institut für Industriekommunikation und Fachmedien GmbH

  9. Brinksmeier E, Klocke F, Lucca DA, Sölter J., Meyer D (2014) Process signatures – a new approach to solve the inverse surface integrity problem in machining processes. Procedia CIRP 13:429–434. https://doi.org/10.1016/j.procir.2014.04.073

    Article  Google Scholar 

  10. Buchkremer S, Klocke F (2017) Compilation of a thermodynamics based process signature for the formation of residual surface stresses in metal cutting. Wear 376-377:1156–1163. https://doi.org/10.1016/j.wear.2016.11.013

    Article  MATH  Google Scholar 

  11. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int J Mach Tools Manuf 48(3-4):275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  12. Chen G, Ren C, Yang X, Jin X, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Technol 56(9-12):1027–1038. https://doi.org/10.1007/s00170-011-3233-6

    Article  Google Scholar 

  13. Courbon C, Mabrouki T, Rech J, Mazuyer D, D’Eramo E (2013) On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: Formation mechanisms and influence on the cutting process. Appl Therm Eng 50(1):1311–1325. https://doi.org/10.1016/j.applthermaleng.2012.06.047

    Article  Google Scholar 

  14. Courbon C, Sajn V, Kramar D, Rech J, Kosel F, Kopac J (2011) Investigation of machining performance in high pressure jet assisted turning of Inconel 718: A numerical model. J Mater Process Technol 211(11):1834–1851. https://doi.org/10.1016/j.jmatprotec.2011.06.006

    Article  Google Scholar 

  15. Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7-8):931–942. https://doi.org/10.1016/j.wear.2006.10.009

    Article  Google Scholar 

  16. Erice B, Gálvez F (2014) A coupled elastoplastic-damage constitutive model with lode angle dependent failure criterion. Int J Solids Struct 51(1):93–110. https://doi.org/10.1016/j.ijsolstr.2013.09.015

    Article  Google Scholar 

  17. Hoppe S (2003) Experimental and numerical analysis of chip formation in metal cutting. Dissertation. RWTH Aachen, Aachen

    Google Scholar 

  18. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Procedings of the 7th int. symposium on ballistics, the hague, The Netherlands, pp 541–547

  19. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  20. Klocke F (2011) Manufacturing process. RWTH edition. Springer, Berlin

    Google Scholar 

  21. Klocke F, Döbbeler B, Peng B, Lakner T (2017) FE-simulation of the cutting process under consideration of cutting fluid. Procedia CIRP 58:341–346. https://doi.org/10.1016/j.procir.2017.03.235

    Article  Google Scholar 

  22. Klocke F, Döbbeler B, Peng B, Schneider S (2018) Tool-based inverse determination of material model of direct aged alloy 718 for fem cutting simulation. Procedia CIRP 77:54–57. https://doi.org/10.1016/j.procir.2018.08.211

    Article  Google Scholar 

  23. Klocke F, Gierlings S, Vogtel P, Veselovac D, Lung D (2012) Impact of cutting speed and material on surface quality in broaching of Nickel-Based Alloys. Ninth international conference on High Speed Machining HSM, San Sebastian, Spain, pp 978–984

  24. Krueger DD (1989) The development of Direct Age 718 for gas turbine engine disk applications. Superalloy 718: Metallurgy and Applications 1989:279–296

    Article  Google Scholar 

  25. Laakso SV, Agmell M, Ståhl JE (2018) The mystery of missing feed force — the effect of friction models, flank wear and ploughing on feed force in metal cutting simulations. J Manuf Process 33:268–277. https://doi.org/10.1016/j.jmapro.2018.05.024

    Article  Google Scholar 

  26. Lane BM, Dow TA, Scattergood R (2013) Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel. Wear 300(1-2):216–224. https://doi.org/10.1016/j.wear.2013.02.012

    Article  Google Scholar 

  27. Lorentzon J, Järvstråt N (2008) Modelling tool wear in cemented- carbide machining alloy 718. Int J Mach Tools Manuf 48(10): 1072–1080. https://doi.org/10.1016/j.ijmachtools.2008.03.001

    Article  Google Scholar 

  28. Oberwinkler B (2016) Integrated process modeling for the mechanical properties optimization of Direct Aged Alloy 718. https://doi.org/10.1002/9781119075646.ch55

  29. Oxley PLB (1963) Rate of strain effect in metal cutting. Journal of Engineering for Industry 85(4):335. https://doi.org/10.1115/1.3669884

    Article  Google Scholar 

  30. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46(5):518–530. https://doi.org/10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  31. Pirso J, Letunovitš S, Viljus M (2004) Friction and wear behaviour of cemented carbides. Wear 257(3-4):257–265. https://doi.org/10.1016/j.wear.2003.12.014

    Article  Google Scholar 

  32. Puls H, Klocke F, Lung D (2014) Experimental investigation on friction under metal cutting conditions. Wear 310(1-2):63–71. https://doi.org/10.1016/j.wear.2013.12.020

    Article  Google Scholar 

  33. Puls H, Klocke F, Veselovac D (2015// 2016) FEM-based prediction of heat partition in dry metal cutting of AISI 1045. Int J Adv Manuf Technol 86(1-4):737–745. https://doi.org/10.1007/s00170-015-8190-z

  34. Rech J, Arrazola PJ, Claudin C, Courbon C, Pusavec F, Kopac J (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann Manuf Technol 62(1):79–82. https://doi.org/10.1016/j.cirp.2013.03.099

    Article  Google Scholar 

  35. Saito H, Iwabuchi A, Shimizu T (2006) Effects of Co content and WC grain size on wear of WC cemented carbide. Wear 261(2):126–132. https://doi.org/10.1016/j.wear.2005.09.034

    Article  Google Scholar 

  36. Seimann M, Peng B, Fischersworring-Bunk A, Rauch S, Klocke F, Döbbeler B (2018) Model-based analysis in finish broaching of Inconel 718. Int J Adv Manuf Technol 97(9-12):3751–3760. https://doi.org/10.1007/s00170-018-2221-5

    Article  Google Scholar 

  37. Usui E, Shirikashi ST, Kitagawa T (1984) Analytical prediction of cutting tool wear. Wear 1984 // 100(1-3):129–151. https://doi.org/10.1016/0043-1648(84)90010-3

    Article  Google Scholar 

  38. Vogtel P, Klocke F, Puls H, Buchkremer S, Lung D (2013) Modelling of process forces in broaching Inconel 718. Procedia CIRP 8:409–414

    Article  Google Scholar 

  39. Wan M, Ye XY, Wen DY, Zhang WH (2019) Modeling of machining-induced residual stresses. J Mater Sci 54(1):1–35. https://doi.org/10.1007/s10853-018-2808-0

    Article  Google Scholar 

  40. Yen YC, Söhner J, Lilly B, Altan T (2004) Estimation of tool wear in orthogonal cutting using the finite element analysis. J Mater Process Technol 146(1):82–91. https://doi.org/10.1016/S0924-0136(03)00847-1

    Article  Google Scholar 

  41. Zemzemi F, Rech J, Salem WB, Dogui A, Kapsa P (2014) Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Advances in Manufacturing Science and Technology 38(1). https://doi.org/10.2478/amst-2014-0001

  42. Zhang Y, Outeiro JC, Mabrouki T (2015) On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31:112–117. https://doi.org/10.1016/j.procir.2015.03.052

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the German Research Foundation (DFG) for the funding of the depicted research within the project ”Modelling of broaching processes by multi-scale discretization” (KL 500/159-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingxiao Peng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, B., Bergs, T., Klocke, F. et al. An advanced FE-modeling approach to improve the prediction in machining difficult-to-cut material. Int J Adv Manuf Technol 103, 2183–2196 (2019). https://doi.org/10.1007/s00170-019-03456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03456-0

Keywords

Navigation