Skip to main content
Log in

Investigation on flow field of ultrasonic-assisted abrasive waterjet using CFD with discrete phase model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The characteristics of flow field have significant influence on impact erosions of containing particles in abrasive waterjet machining. However, measurement of velocity and pressure distributions in flow field is hard to implement. In present study, computational fluid dynamics (CFD) is utilized to model the abrasive waterjet flow field in ultrasonic-assisted abrasive waterjet machining with the aid of discrete phase method. The workpiece vibration is simulated by using dynamic mesh method. The effect of ultrasonic vibration on pressure and velocity distributions was investigated, as well as the particle impact parameters such as local impact angle and velocity. The results indicate that the pressure value is lower when vibration is applied on target and the lateral flow along the vibration direction is enhanced and affected the high pressurized water film. Moreover, the particle velocity is higher when vibration is introduced due to the fact that the weakening of stagnation effect owing to the shear of vibrating target surface. In addition, ultrasonic-assisted abrasive waterjet erosion experiments were conducted to explore the practical effects on material removal and erosion mechanism. The experimental results verify that application of ultrasonic vibration is considered to facilitate the material removal of abrasive waterjet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hloch S, Valíček J (2012) Topographical anomaly on surfaces created by abrasive waterjet. Int J Adv Manuf Technol 59(5-8):593–604. https://doi.org/10.1007/s00170-011-3511-3

    Article  Google Scholar 

  2. Liu D, Zhu H, Huang C, Wang J, Yao P (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. Int J Adv Manuf Technol 87(9-12):2673–2682. https://doi.org/10.1007/s00170-016-8600-x

    Article  Google Scholar 

  3. Alberdi A, Rivero A, López de Lacalle LN, Etxeberria I, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51(5-8):467–480. https://doi.org/10.1007/s00170-010-2662-y

    Article  Google Scholar 

  4. El-Domiaty AA, Abdel-Rahman AA (1997) Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. Int J Adv Manuf Technol 13(3):172–181. https://doi.org/10.1007/BF01305869

    Article  Google Scholar 

  5. Hou R, Huang C, Zhu H (2017) Experimental study on pulsation behavior of the ultrasonic vibration-assisted abrasive waterjet. Int J Adv Manuf Technol 91(9-12):3851–3859. https://doi.org/10.1007/s00170-017-0011-0

    Article  Google Scholar 

  6. Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49(7-8):569–578. https://doi.org/10.1016/j.ijmachtools.2009.02.005

    Article  Google Scholar 

  7. Booij SM, van Brug H, Braat JJM, Fähnle OW (2002) Nanometer deep shaping with fluid jet polishing. Opt Eng 41(8):1926. https://doi.org/10.1117/1.1489677

    Article  Google Scholar 

  8. Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channelling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53(1):118–126. https://doi.org/10.1016/j.ijmachtools.2011.10.005

    Article  Google Scholar 

  9. Haj Mohammad Jafar R, Nouraei H, Emamifar M, Papini M, Spelt JK (2014) Erosion modeling in abrasive slurry jet micro-machining of brittle materials. J Manuf Process 17:127–140. https://doi.org/10.1016/j.jmapro.2014.08.006

    Article  Google Scholar 

  10. Kowsari K, Nouhi A, Hadavi V, Spelt JK, Papini M (2017) Prediction of the erosive footprint in the abrasive jet micro-machining of flat and curved glass. Tribol Int 106:101–108. https://doi.org/10.1016/j.triboint.2016.10.038

    Article  Google Scholar 

  11. Kowsari K, Nouraei H, Samareh B, Papini M, Spelt JK (2016) CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics. Ceram Int 42(6):7030–7042. https://doi.org/10.1016/j.ceramint.2016.01.091

    Article  Google Scholar 

  12. Nouraei H, Kowsari K, Samareh B, Spelt JK, Papini M (2016) Calibrated CFD erosion modeling of abrasive slurry jet micro-machining of channels in ductile materials. J Manuf Process 23:90–101. https://doi.org/10.1016/j.jmapro.2016.06.007

    Article  Google Scholar 

  13. Qi H, Wen D, Yuan Q, Zhang L, Chen Z (2017) Numerical investigation on particle impact erosion in ultrasonic-assisted abrasive slurry jet micro-machining of glasses. Powder Technol 314:627–634. https://doi.org/10.1016/j.powtec.2016.08.057

    Article  Google Scholar 

  14. Qi H, Xie Z, Hong T, Wang Y, Kong F, Wen D (2017) CFD modelling of a novel hydrodynamic suspension polishing process for ultra-smooth surface with low residual stress. Powder Technol 317:320–328. https://doi.org/10.1016/j.powtec.2017.05.030

    Article  Google Scholar 

  15. Qi H, Wen D, Lu C, Li G (2016) Numerical and experimental study on ultrasonic vibration-assisted micro-channelling of glasses using an abrasive slurry jet. Int J Mech Sci 110:94–107. https://doi.org/10.1016/j.ijmecsci.2016.03.013

    Article  Google Scholar 

  16. Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47(1):249–252. https://doi.org/10.1016/S0007-8506(07)62828-5

    Article  Google Scholar 

  17. Tian C, Chen X, Li D, Zhang W, Guan S (2017) Analysis of surface formation of rotary ultrasonic milling of quartz glass based on nano-indentation experiment. Procedia Eng 174:470–476. https://doi.org/10.1016/j.proeng.2017.01.168

    Article  Google Scholar 

  18. Hreha P, Radvanská A, Hloch S, Peržel V, Królczyk G, Monková K (2015) Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int J Adv Manuf Technol 77(1-4):763–774. https://doi.org/10.1007/s00170-014-6497-9

    Article  Google Scholar 

  19. Lehocka D, Klich J, Foldyna J, Hloch S, Krolczyk JB, Carach J, Krolczyk GM (2016) Copper alloys disintegration using pulsating water jet. Meas J Int Meas Confed 82:375–383. https://doi.org/10.1016/j.measurement.2016.01.014

    Article  Google Scholar 

  20. Lv Z, Huang C, Zhu H, Wang J, Wang Y, Yao P (2015) A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. Int J Adv Manuf Technol 78(5-8):1361–1369. https://doi.org/10.1007/s00170-014-6528-6

    Article  Google Scholar 

  21. Lv Z, Huang C, Zhu H, Wang J, Yao P, Liu Z (2015) FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol 78:1641–1649. https://doi.org/10.1007/s00170-014-6768-5

  22. Lv Z, Huang CZ, Wang J, Zhu HT, Che CL (2012) A 3D simulation on fluid field at the impact zone of abrasive water jet under different impact angles. Adv Mater Res 565:345–350. https://doi.org/10.4028/www.scientific.net/AMR.565.345

    Article  Google Scholar 

  23. Kowsari K, Nouraei H, James DF, Spelt JK, Papini M (2014) Abrasive slurry jet micro-machining of holes in brittle and ductile materials. J Mater Process Technol 214(9):1909–1920. https://doi.org/10.1016/j.jmatprotec.2014.04.008

    Article  Google Scholar 

  24. Li HZ, Wang J, Fan JM (2009) Analysis and modelling of particle velocities in micro-abrasive air jet. Int J Mach Tools Manuf 49(11):850–858. https://doi.org/10.1016/j.ijmachtools.2009.05.012

    Article  Google Scholar 

  25. Li HZ, Lee A, Fan J, Yeoh GH, Wang J (2014) On DEM-CFD study of the dynamic characteristics of high speed micro-abrasive air jet. Powder Technol 267:161–179. https://doi.org/10.1016/j.powtec.2014.07.018

    Article  Google Scholar 

  26. Humphrey JAC (1990) Fundamentals of fluid motion in erosion by solid particle impact. Int J Heat Fluid Flow 11(3):170–195. https://doi.org/10.1016/0142-727X(90)90036-B

    Article  Google Scholar 

  27. Marshall DB, Lawn BR, Evans AG (1982) Elastic/plastic indentation damage in ceramics: the lateral crack system. J Am Ceram Soc 65(11):561–566. https://doi.org/10.1111/j.1151-2916.1982.tb10782.x

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (51405274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Hou, R., Tian, Y. et al. Investigation on flow field of ultrasonic-assisted abrasive waterjet using CFD with discrete phase model. Int J Adv Manuf Technol 96, 963–972 (2018). https://doi.org/10.1007/s00170-018-1635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1635-4

Keywords

Navigation