Skip to main content
Log in

Definition and determination of the minimum uncut chip thickness of microcutting

The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Uncut chip thickness is comparable to cutting edge radius in micromachining. If the uncut chip thickness is less than a critical value, there will be no chip formation. This critical value is termed as minimum uncut chip thickness (MUCT). Although minimum uncut chip thickness has been well defined in orthogonal cutting, it is often poorly understood in practical complex turning and milling processes. In this paper, a set of definitions of minimum uncut chip thickness for three-dimensional turning and milling processes are presented. This paper presents an analysis of the state-of-the-art research on minimum uncut chip thickness in precision micromachining. Numerical and experimental methods for determination of MUCT values and their effects on process mechanics and surface integrity in microcutting will be critically assessed in this paper. In addition, a detailed discussion on the characteristics of different methods to determine minimum uncut chip thickness and several unsolved problems are proposed for the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407

    Article  Google Scholar 

  2. Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29:246–252

    Article  Google Scholar 

  3. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnol 3:6–9

    Article  Google Scholar 

  4. Liu X, Devor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. Trans ASME 128:474–481

    Google Scholar 

  5. Shi ZY, Liu ZQ (2009) Determination of minimum uncut chip thickness in micromachining. Adv Mater Res 69–70:408–412

    Article  Google Scholar 

  6. Kishawy HA, Elbestawi MA (1999) Effects of process parameters on material side floe during hard turning. Int J Mach Tool Manu 39:1017–1030

    Article  Google Scholar 

  7. Jain VK, Kalia S, Sidpara A, Kulkarni (2012) Fabrication of micro-features and micro-tools using electrochemical micromachining. Int J Adv Manuf Technol 61:1175

    Article  Google Scholar 

  8. Piotrowska I, Brandt C, Karimi H, Maass P (2009) Mathematical model of micro turning process. Int J Adv Manuf Technol 45:33–40

    Article  Google Scholar 

  9. Yen YC, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146:72–81

    Article  Google Scholar 

  10. Basuray PK, Misra BK, LAL GK (1977) Transition from ploughing to cutting during machining with blunt tools. Wear 43:341–349

    Article  Google Scholar 

  11. Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tool Manu 45:529–535

    Article  Google Scholar 

  12. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330

    Article  Google Scholar 

  13. Bissacco G, Hansen HN, Slunsky J (2008) Modeling the cutting edge radius size effect for force prediction in micro milling. Ann CIRP 57:113–116

    Article  Google Scholar 

  14. Dhanorker A, Ozel T (2006) An experimental and modeling study on meso/micro end milling process. ASME, MSEC, Ypsilanti, MI

    Google Scholar 

  15. Moneim Abdel ME (1980) Tool edge roundness in finish machining at high cutting speeds. Wear 58:173–192

    Article  Google Scholar 

  16. Sadat AB (2005) The effect of the tool cutting edge geometry on the quality of machined surface in micro turning operation. ASME, MSEC, Long Beach, California, USA

    Google Scholar 

  17. Liu X, Devor RE, Kapoor SG (2004) The mechanics of machining at the microscale: assessment of the current state of the science. Trans ASME 126:666–678

    Article  Google Scholar 

  18. Fang FZ, Liu YC (2004) On minimum exit-burr in micro cutting. J Micromech Microeng 14:984–988

    Article  Google Scholar 

  19. Waldorf DJ, Devor RE, Kapoor SG (1999) An evaluation of ploughing models for orthogonal machining. Trans ASME 121:550–558

    Google Scholar 

  20. Kim CJ, Mayor JR, Ni J (2004) A static model of chip formation in microscale milling. Trans ASME 126:710–718

    Google Scholar 

  21. Vazquez E, Rodriguez C, Zuniga AZ, Ciurana J (2010) An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int J Adv Manuf Technol 51:945

    Article  Google Scholar 

  22. Bang YB, Lee KM, Oh S (2005) 5-Axis micro milling machine for machining micro parts. Int J Adv Manuf Technol 25:888

    Article  Google Scholar 

  23. Kim CJ, Bono M, Ni J (2002) Experimental analysis of chip formation in micro-milling. Trans NAMRI/SME 30:1–8

    Google Scholar 

  24. Dhanorker A, Liu XY, Ozel T (2007) Micormilling process planning and modeling for micromold manufacturing. ASME, MSEC, Atlanta, Georgia, USA

    Google Scholar 

  25. Liu XY, Jun MBG, Devor RE, Kapoor SG (2004) Cutting mechanisms and their influence on dynamic forces vibrations and stability in micro-endmilling. ASME, MSEC, Anaheim, California, USA

    Google Scholar 

  26. Weule H, Huntrup V, Tritschle H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50:61–64

    Article  Google Scholar 

  27. Li CF, Lai XM, Li HT, Peng LF, Ni J (2007) Development of micro milling machine and experimental study on meso scale milling. ASME, MNC, Sanya, Hainan, China

    Google Scholar 

  28. Reyad M, Mohammad YA (2009) Investigation of machining parameters for the multiple-response optimization of micro electrodischarge milling. Int J Adv Manuf Technol 43:264

    Article  Google Scholar 

  29. Yan J, Zhang Z, Kuriyagawa T, Gonda H (2010) Fabricating micro-structured surface by using signal-crystalline diamond endmill. Int J Adv Manuf Technol 51:957

    Article  Google Scholar 

  30. Li P, Oosterling A, Hoogstrate M, Langen H, Schmidt R (2011) Design of micro square endmills for hard milling applications. Int J Adv Manuf Technol 57:859

    Article  Google Scholar 

  31. Sartkulvanich P, Koppka F, Altan T (2004) Determination of flow stress for metal cutting simulation—a progress report. J Mater Process Technol 146:61–71

    Article  Google Scholar 

  32. Guo YB, Wen Q (2005) A hybrid modeling approach to investigate chip morphology transition with the stagnation effect by cutting edge geometry. Trans NAMRI/SME 33:469–475

    Google Scholar 

  33. Shimada S, Ikawa N, Tanaka H, Ohmuri G, Uchikoshi J, Yoshinaga H (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Ann CIRP 42:91–94

    Article  Google Scholar 

  34. Lai XM, Li HT, Li CF, Lin ZQ, Ni J (2008) Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tool Manuf 48:1–14

    Article  Google Scholar 

  35. Guo YB, Anurag S (2007) Finite element modeling of random multiphase materials for micromachining, Proc IMECE2007, November 11–15, Seattle, Washington, USA

  36. Guo YB, Anurag S (2009) A novel hybrid predictive model and validation of unique hook-shaped residual stress profiles in hard turning. CIRP Ann Manuf Technol 58:81–84

    Article  Google Scholar 

  37. Guo YB, Anurag S (2008) Finite element modeling and simulation of micromachining random multiphase materials. Trans NAMRI/SME 36:373–379

    Google Scholar 

  38. Simoneau A, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tool Manuf 46:467–481

    Article  Google Scholar 

  39. Vogler MP, Devor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-endmilling, part I: surface generation. Trans ASME 126:685–694

    Google Scholar 

  40. Karpat Y, Ozel T (2008) Processing simulations for 3D turning using uniform and variable microgeometry PCBN tools. Int J Machi 4(1):26–38

    Google Scholar 

  41. Shaw MC (1984) Metal cutting principles. Oxford University Press, Oxford

    Google Scholar 

  42. Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy. Int J Mach Tool Manuf 41:1055–1070

    Article  Google Scholar 

  43. Venkatachalam S, Li XP, Liang SY (2009) Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. J Mater Process Technol 209:3306–3319

    Article  Google Scholar 

  44. Samuel J, Dikshit A, Devor R, Kapoor SG, Hsia KJ (2008) Effect of carbon nanotube (CNT) loading on the thermo-mechanical properties and the machinabilty of CNT-reinforced polymer composites. ASME/MSEC, Evanston, Illinnois, USA

    Google Scholar 

  45. Wang SM, Chiang ZS, Chen DF (2008) Determination of cutting forces for micro milling. ASME, MSEC, Evanston, Illinnois, USA

    Google Scholar 

  46. Weber M, Hochrainer T, Gumbsch P (2007) Investigation of size-effect in machining with geometrically defined cutting edges. Mach Sci Technol 11:447–473

    Article  Google Scholar 

  47. Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113:348–354

    Article  Google Scholar 

  48. Ibrahim ES, Sefika K (2011) Investigation of micro-milling process parameters for surface roughness and milling depth. Int J Adv Manuf Technol 54:567

    Article  Google Scholar 

  49. Park DS, Seo TI, Cho MW (2005) Mechanical etching of micro pockets by powder blasting. Int J Adv Manuf Technol 25:1098–1104

    Article  Google Scholar 

  50. Imran M, Mativenta P, Gholinai A, Withers P (2011) Evaluation of surface integrity in micro drilling process for nickel-based superalloy. Int J Adv Manuf Technol 55:465

    Article  Google Scholar 

  51. Choudhury IA, Ei-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77:278–284

    Article  Google Scholar 

  52. Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel718. Int J Mach Tool Manuf 48:15–28

    Article  Google Scholar 

  53. Arunachalam RM, Manan MA, Spowage AC (2004) Surface integrity when machining age hardened Inconel718 with coated carbide cutting tools. Int J Mach Tool Manuf 44:1481–1491

    Article  Google Scholar 

  54. Veldhuis SC, Dosbaeva GK, Elfizy A, Fox-Rabinovich GS, Wagg T (2010) Investigations of white layer formation during machining of powder metallurgical Ni-Based ME 16 Superalloy. Jmepeg 19:1031–1036

    Article  Google Scholar 

  55. Qiao Y, Ai X, Liu ZQ, Zhao J (2010) Experimental research in high efficiency milling of powder metallurgy superalloy. ICMTMA 10 Proceedings of The 2010 International Conference on Measuring Technology and Mechatronics Automation. 2:178–181

  56. Du J, Liu ZQ, Wan Y, Su GS (2011) Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95. Int J Adv Manuf Technol 56:553–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zhanqiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanqiang, L., Zhenyu, S. & Yi, W. Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf Technol 69, 1219–1232 (2013). https://doi.org/10.1007/s00170-013-5109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5109-4

Keywords

Navigation