Skip to main content
Log in

Delta screw versus RetroScrew tibial fixation for ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study is to determine whether the RetroScrew tibial fixation system offers a biomechanical advantage over the Delta screw for anterior cruciate ligament (ACL) reconstruction in cadaveric tibias with low bone mineral density (BMD).

Methods

Ten matched pairs of osteoporotic cadaveric tibiae underwent simulated ACL reconstruction using quadrupled hamstring grafts with one of the two tibial fixation constructs. Group 1 was fixed with the Delta screw (DS; 35-mm antegrade biointerference screw), and group 2 was fixed with the RetroScrew system (RSS; 20-mm retrograde and 17-mm antegrade biointerference screws). Each construct was cyclically loaded (50–200 N, 1 Hz, 500 cycles) and subsequently loaded to failure (20 mm/s).

Results

All specimens were osteoporotic without significant segmental (proximal, middle, and distal) BMD differences between groups by quantitative computed tomography (P = n.s.). A trend was noted for more construct failures due to graft slippage in the DS group (n = 3) over the RSS group (n = 1). There were no significant differences in cyclic displacement (P = n.s.), maximum cyclic stiffness (P = n.s.), maximum load at failure (P = n.s.), or pullout stiffness (P = n.s.) between groups.

Conclusions

In an osteoporotic cadaveric model, there was no significant biomechanical advantage of the RetroScrew system versus the Delta screw for tibial fixation in soft tissue graft ACL reconstruction. However, a trend toward lower graft fixation failure to cyclic loading was noted with the RetroScrew system.

Level of evidence

Biomechanical comparative study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bayar A, Sarikaya S, Keser S, Ozdolap S, Tuncay I, Ege A (2008) Regional bone density changes in anterior cruciate ligament deficient knees: a DEXA study. Knee 15:373–377

    Article  PubMed  Google Scholar 

  2. Beynnon BD, Amis AA (1998) In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S70–S76

    Google Scholar 

  3. Bohnsack M, Rühmann O, Lück K, Wirth CJ (2002) The influence of age on the outcome of anterior cruciate ligament reconstruction. Z Orthop Ihre Grenzgeb 140:194–198

    Article  PubMed  CAS  Google Scholar 

  4. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    PubMed  Google Scholar 

  5. Brown GA, Peña F, Grøntvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    Article  PubMed  CAS  Google Scholar 

  6. Buss DD, Warren RF, Wickiewicz TL, Galinat BJ, Panariello R (1993) Arthroscopically assisted reconstruction of the anterior cruciate ligament with use of autogenous patellar-ligament grafts. Results after twenty-four to forty-two months. J Bone Joint Surg Am 75:1346–1355

    PubMed  CAS  Google Scholar 

  7. Caborn DN, Coen M, Neef R, Hamilton D, Nyland J, Johnson DL (1998) Quadrupled semitendinosus-gracilis autograft fixation in the femoral tunnel: a comparison between a metal and a bioabsorbable interference screw. Arthroscopy 14:241–245

    Article  PubMed  CAS  Google Scholar 

  8. Caborn DN, Nyland J, Selby J, Tetik O (2003) Biomechanical testing of hamstring graft tibial tunnel fixation with bioabsorbable interference screws. Arthroscopy 19:991–996

    Article  PubMed  Google Scholar 

  9. Chang HC, Nyland J, Nawab A, Burden R, Caborn DN (2005) Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 33:1057–1064

    Article  PubMed  Google Scholar 

  10. Charlick DA, Caborn DN (2000) Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 16:E20

    Article  PubMed  CAS  Google Scholar 

  11. Ciccotti MG, Lombardo SJ, Nonweiler B, Pink M (1994) Non-operative treatment of ruptures of the anterior cruciate ligament in middle-aged patients. Results after long-term follow-up. J Bone Joint Surg Am 76:1315–1321

    PubMed  CAS  Google Scholar 

  12. Dahm DL, Wulf CA, Dajani KA, Dobbs RE, Levy BA, Stuart MA (2008) Reconstruction of the anterior cruciate ligament in patients over 50 years. J Bone Joint Surg Br 90:1446–1450

    Google Scholar 

  13. Ejerhed L, Kartus J, Nilsén R, Nilsson U, Kullenberg R, Karlsson J (2004) The effect of anterior cruciate ligament surgery on bone mineral in the calcaneus: a prospective study with a 2-year follow-up evaluation. Arthroscopy 20:352–359

    Article  PubMed  Google Scholar 

  14. Elliott MJ, Kurtz CA (2007) Peripheral versus aperture fixation for anterior cruciate ligament reconstruction. Clin Sports Med 26:683–693

    Article  PubMed  Google Scholar 

  15. Gordan GS, Genant HK (1985) The aging skeleton. Clin Geriatr Med 1:95–118

    PubMed  CAS  Google Scholar 

  16. Heier KA, Mack DR, Moseley JB, Paine R, Bocell JR (1997) An analysis of anterior cruciate ligament reconstruction in middle-aged patients. Am J Sports Med 25:527–532

    Article  PubMed  CAS  Google Scholar 

  17. Honl M, Carrero V, Hille E, Schneider E, Morlock MM (2002) Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading. Am J Sports Med 30:549–557

    PubMed  Google Scholar 

  18. Howell SM, Gittins ME, Gottlieb JE, Traina SM, Zoellner TM (2001) The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med 29:567–574

    PubMed  CAS  Google Scholar 

  19. Järvinen M, Kannus P (1997) Injury of an extremity as a risk factor for the development of osteoporosis. J Bone Joint Surg Am 79:263–276

    PubMed  Google Scholar 

  20. Kannus P, Leppälä J, Lehto M, Sievänen H, Heinonen A, Järvinen M (1995) A rotator cuff rupture produces permanent osteoporosis in the affected extremity, but not in those with whom shoulder function has returned to normal. J Bone Miner Res 10:1263–1271

    Article  PubMed  CAS  Google Scholar 

  21. Kannus P, Sievänen H, Järvinen M, Heinonen A, Oja P, Vuori I (1992) A cruciate ligament injury produces considerable, permanent osteoporosis in the affected knee. J Bone Miner Res 7:1429–1434

    Article  PubMed  CAS  Google Scholar 

  22. Khodadadyan-Klostermann C, von Seebach M, Taylor WR, Duda GN, Haas NP (2004) Distribution of bone mineral density with age and gender in the proximal tibia. Clin Biomech 19:370–376

    Article  Google Scholar 

  23. Klein SA, Nyland J, Caborn DN, Kocabey Y, Nawab A (2005) Comparison of volumetric bone mineral density in the tibial region of interest for ACL reconstruction. Surg Radiol Anat 27:372–376

    Article  PubMed  Google Scholar 

  24. Kocabey Y, Nawab A, Nyland J, Isikan UE, Caborn D (2004) Soft tissue tendon graft fixation in the tibial tunnel with a bioabsorbable screw-EndoPearl combination in tibiae of low bone mineral density: a biomechanical study. Acta Orthop Traumatol Turc 38:282–287

    PubMed  Google Scholar 

  25. Larson RV (1996) Anterior cruciate ligament reconstruction with hamstring tendons. Oper Tech Orthop 6:138–146. doi:10.1016/S1048-6666(96)80013-9

    Article  Google Scholar 

  26. Lee JJ, Otarodifard K, Jun BJ, McGarry MH, Hatch GF III, Lee TQ (2011) Is supplementary fixation necessary in anterior cruciate ligament reconstructions? Am J Sports Med 39:360–365

    Article  PubMed  Google Scholar 

  27. Leppälä J, Kannus P, Natri A, Pasanen M, Sievänen H, Vuori I, Järvinen M (1999) Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int 64:357–363

    Article  PubMed  Google Scholar 

  28. Lui PP, Ho G, Shum WT, Lee YW, Ho PY, Lo WN, Lo CK (2010) Inferior tendon graft to bone tunnel healing at the tibia compared to that at the femur after anterior cruciate ligament reconstruction. J Orthop Sci 15:389–401

    Article  PubMed  Google Scholar 

  29. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72:557–567

    PubMed  CAS  Google Scholar 

  30. Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 11:275–288

    Article  PubMed  CAS  Google Scholar 

  31. Morgan CD, Stein DA, Leitman EH, Kalman VR (2002) Anatomic tibial graft fixation using a retrograde bio-interference screw for endoscopic anterior cruciate ligament reconstruction. Arthroscopy 18:E38

    PubMed  Google Scholar 

  32. Nilsson BE (1966) Post-traumatic osteopenia. A quantitative study of the bone mineral mass in the femur following fracture of the tibia in man using americium-241 as a photon source. Acta Orthop Scand 37(Suppl 91):1–55

    Google Scholar 

  33. Nyland J, Fisher B, Brand E, Krupp R, Caborn DN (2010) Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 26:1248–1257

    Article  PubMed  Google Scholar 

  34. Nyland J, Kocabey Y, Caborn DN (2004) Insertion torque pullout strength relationship of soft tissue tendon graft tibia tunnel fixation with a bioabsorbable interference screw. Arthroscopy 20:379–384

    Article  PubMed  Google Scholar 

  35. Petersen MM, Olsen C, Lauritzen JB, Lund B, Hede A (1996) Late changes in bone mineral density of the proximal tibia following total or partial medial meniscectomy. A randomized study. J Orthop Res 14:16–21

    Article  PubMed  CAS  Google Scholar 

  36. Rhee PC, Levy BA, Stuart MJ, Thoreson A, An KN, Dahm DL (2011) A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension. Knee Surg Sports Traumatol Arthrosc PMID: 21258782

  37. Rittweger J, Maffulli N, Maganaris CN, Narici MV (2005) Reconstruction of the anterior cruciate ligament with a patella-tendon-bone graft may lead to a permanent loss of bone mineral content due to decreased patellar tendon stiffness. Med Hypotheses 64:1166–1169

    Article  PubMed  Google Scholar 

  38. Safran MR, Greene HS (2006) Avoidance and management of intra-articular complication of anterior cruciate ligament reconstruction. Instr Course Lect 55:475–488

    PubMed  Google Scholar 

  39. Scheffler SU, Südkamp NP, Gőckenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–305

    Article  PubMed  Google Scholar 

  40. Selby JB, Johnson DL, Hester P, Caborn DN (2001) Effect of screw length on bioabsorbable interference screw fixation in a tibial bone tunnel. Am J Sports Med 29:614–619

    PubMed  CAS  Google Scholar 

  41. Sievänen H, Heinonen A, Kannus P (1996) Adaptation of bone to altered loading environment: a biomechanical approach using X-ray absorptiometric data from the patella of a young woman. Bone 19:55–59

    Article  PubMed  Google Scholar 

  42. Sievänen H, Kannus P, Heinonen A, Oja P, Vuori I (1994) Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone 15:85–90

    Article  PubMed  Google Scholar 

  43. Simonian PT, Erickson MS, Larson RV, O’Kane JW (2000) Tunnel expansion after hamstring anterior cruciate ligament reconstruction with 1-incision EndoButton femoral fixation. Arthroscopy 16:707–714

    Article  PubMed  CAS  Google Scholar 

  44. Takata S, Abbaspour A, Kashihara M, Nakao S, Yasui N (2007) Unilateral chronic insufficiency of anterior cruciate ligament decreases bone mineral content and lean mass of the injured lower extremity. J Med Invest 54:316–321

    Article  PubMed  Google Scholar 

  45. Takeuchi R, Saito T, Mituhashi S, Suzuki E, Yamada I, Koshino T (2002) Double-bundle anatomic anterior cruciate ligament reconstruction using bone-hamstring-bone composite graft. Arthroscopy 18:550–555

    Article  PubMed  Google Scholar 

  46. Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37:160–167

    Article  PubMed  Google Scholar 

  47. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Südkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    PubMed  CAS  Google Scholar 

  48. Weiler A, Richter M, Schmidmaier G, Kandziora F, Südkamp NP (2001) The EndoPearl device increases fixation strength and eliminates construct slippage of hamstring tendon grafts with interference screw fixation. Arthroscopy 17:353–359

    Article  PubMed  CAS  Google Scholar 

  49. Weiss J, Paulos LE (1999) Mechanical testing of ligament fixation devices. Tech Orthop 14:14–21

    Google Scholar 

  50. Wu SY, Jia HH, Hans D, Lan J, Wang LY, Li JX, Cai YZ (2009) Assessment of volumetric bone mineral density of the femoral neck in postmenopausal women with and without vertebral fractures using quantitative multi-slice CT. J Zhejiang Univ Sci B 10:499–504

    Article  PubMed  Google Scholar 

  51. Yoo JC, Ahn JH, Kim JH, Kim BK, Choi KW, Bae TS, Lee CY (2006) Biomechanical testing of hybrid hamstring graft tibial fixation in anterior cruciate ligament reconstruction. Knee 13:455–459

    Article  PubMed  Google Scholar 

  52. Zerahn B, Munk AO, Helweg J, Hovgaard C (2006) Bone mineral density in the proximal tibia and calcaneus before and after arthroscopic reconstruction of the anterior cruciate ligament. Arthroscopy 22:265–269

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, P.C., Dahm, D.L., Stuart, M.J. et al. Delta screw versus RetroScrew tibial fixation for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19 (Suppl 1), 94–100 (2011). https://doi.org/10.1007/s00167-011-1543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1543-8

Keywords

Navigation