Skip to main content
Log in

Dynamical properties of a composite microcracked bar based on a generalized continuum formulation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The dynamical behavior of a mono-dimensional bar with distributed microcracks is addressed in terms of free and forced wave propagation. The multiscale model, derived from a generalized continuum formulation, accounts for the microstructure by means of a microdisplacement variable, added to the standard macrodisplacement, and of internal parameters representing density and length of microcracks. The influence of coupling between micro- and macrodisplacement overall response on the system is discussed, as well as the effect of the damage parameters on the propagating waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rapaport, D.C., Rapaport, D.C.R.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Suzuki, T., Takeuchi, S., Yoshinaga, H.: Dislocation Dynamics and Plasticity. Springer, Berlin (1991)

    Google Scholar 

  3. Beran, M.J., McCoy, J.J.: Mean field variations in a statistical sample of heterogeneous elastic solids. Int. J. Solids Struct. 6(8), 1035–1054 (1970)

    MATH  Google Scholar 

  4. Sanchez-Palencia, E., Zaoui, A.: Homogenization Techniques for Composite Media. Lecture Notes in Physics. Springer, Berlin (1987)

    MATH  Google Scholar 

  5. Blanc, C., Le Bris, C., Lions, P.L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Fago, M., Hayes, R.L., Carter, E.A., Ortiz, M.: Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2005)

    Google Scholar 

  7. Sadowski, T., Trovalusci, P.: Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. CISM Courses and Lectures. Springer, Wien (2014)

    Google Scholar 

  8. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    MATH  Google Scholar 

  9. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    MATH  Google Scholar 

  10. Gurtin, M.E.: Configurational Forces as Basis Concept of Continuum Physics. Springer, Berlin (2000)

    Google Scholar 

  11. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    ADS  MATH  Google Scholar 

  12. Altenbach, H., Eremeyev, V.A. (eds.): Generalized Continua from the Theory to Engineering Application. CISM Courses and Lectures. Springer, Berlin (2013)

    Google Scholar 

  13. Kunin, I.A.: Elastic Media with Microstructure-I. One-Dimensional Models. Springer, Berlin (1982)

    MATH  Google Scholar 

  14. Trovalusci, P.: Molecular approaches for multifield continua: origins and current developments. In: Multiscale Modeling of Complex Materials, pp. 211–278. Springer (2014)

  15. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  16. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325–1357 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Peerlings, R.H.J., Fleck, N.A.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2, 599–619 (2004)

    Google Scholar 

  18. Bacigalupo, A., Gambarotta, L.: Second-order computational homogenization of heterogeneous materials with periodic microstructure. Zeitschrift für Angewandte Mathematik und Mechanik 90(10–11), 565–578 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Trovalusci, P., Masiani, R.: Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 36(14), 2091–2108 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Forest, S., Pradel, F., Sab, K.: Asymptotic analysis of heterogeneous cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Onck, P.R.: Cosserat modeling of cellular solids. Comptes Rendus Mécanique 330, 717–722 (2002)

    ADS  MATH  Google Scholar 

  22. Trovalusci, P., Masiani, R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)

    MATH  Google Scholar 

  23. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Google Scholar 

  24. Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1(2), 115–135 (2010)

    MathSciNet  Google Scholar 

  25. Trovalusci, P., Pau, A.: Derivation of microstructured continua from lattice systems via principle of virtual works. The case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech. 225(1), 157–177 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)

    ADS  Google Scholar 

  27. Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos B Eng. 128, 164–173 (2017)

    Google Scholar 

  28. Trovalusci, P., Augusti, G.: A continuum model with microstructure for materials with flaws and inclusions. Journal de Physique IV Pr8, 383–390 (1998)

    Google Scholar 

  29. Sansalone, V., Trovalusci, P., Cleri, F.: Multiscale modelling of materials by a multifield approach: microscopic stress and strain distribution in fiber-matrix composites. Acta Materialia 54(13), 3485–3492 (2006)

    Google Scholar 

  30. Sansalone, V., Trovalusci, P.: A numerical investigation of structure-property relations in fibre composite materials. Int. J. Multiscale Comput. Eng. 5(2), 141–152 (2007)

    Google Scholar 

  31. Trovalusci, P., Rega, G.: Elastic waves in heterogeneous materials as in multiscale-multifield continua. Proc. Estonian Acad. Sci. Phys. Math. 56(2), 100–107 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Trovalusci, P., Varano, V., Rega, G.: A generalized continuum formulation for composite materials and wave propagation in a microcracked bar. J. Appl. Mech. 77(6), 061002–1/11 (2010)

    Google Scholar 

  33. Trovalusci, P., Varano, V.: Multifield continuum simulations for damaged materials: a bar with voids. Int. J. Multiscale Comput. Eng. 9(5), 599–608 (2011)

    Google Scholar 

  34. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11–12), 1981–1990 (2013)

    Google Scholar 

  35. Berezovski, A., Yildizdag, M.E., Scerrato, D.: On the wave dispersion in microstructured solids. Continuum Mech. Thermodyn. 1–20 (2018)

  36. Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Methods Eng. 54, 331–346 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Wang, Z.P., Sun, C.T.: Modelling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36, 473–485 (2002)

    MATH  Google Scholar 

  38. Sluys, L.J., de Borst, R., Mühlhaus, H.-B.: Wave propagation, localization and dispersion in a gradient-dependent medium. Int. J. Solids Struct. 30, 1153–1171 (1993)

    MATH  Google Scholar 

  39. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur. J. Mech. A Solids 21, 555–572 (2002)

    ADS  MATH  Google Scholar 

  40. Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vib. 297, 727–742 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751–3759 (2009)

    MATH  Google Scholar 

  42. Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  43. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)

    ADS  MATH  Google Scholar 

  44. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)

    ADS  MATH  Google Scholar 

  45. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with internal variables. Arch. Appl. Mech. 81, 229–240 (2011)

    ADS  MATH  Google Scholar 

  46. Bacigalupo, A., Lepidi, M.: Acoustic wave polarization and energy flow in periodic beam lattice materials. Int. J. Solids Struct. 147, 183–203 (2018)

    Google Scholar 

  47. Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)

    MATH  Google Scholar 

  48. Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. Wave Motion 45(4), 471–480 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Askes, H., Metrikine, A.V.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2: static and dynamic response. Eur. J. Mech. A Solids 21, 573–588 (2002)

    ADS  MATH  Google Scholar 

  50. Sansalone, V., Trovalusci, P., Cleri, F.: Multiscale modeling of composite materials by a multifield finite element approach. Int. J. Multiscale Comput. Eng. 3(4), 463–480 (2005)

    Google Scholar 

  51. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  52. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mech. Thermodyn. 27(4–5), 551–570 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Ministry of University and Research, P.R.I.N. 2015, Project 2015JW9NJT Advanced mechanical modeling of new materials and structures for the solution of 2020 Horizon challenges, Sapienza Research Unit (Grant B86J16002300001), and by Sapienza University, Grant 2016 (B82F16005920005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci.

Additional information

Communicated by Victor Eremeyev, Holm Altenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settimi, V., Trovalusci, P. & Rega, G. Dynamical properties of a composite microcracked bar based on a generalized continuum formulation. Continuum Mech. Thermodyn. 31, 1627–1644 (2019). https://doi.org/10.1007/s00161-019-00761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00761-7

Keywords

Navigation