Skip to main content
Log in

Formulation of thermoelastic dissipative material behavior using GENERIC

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We show that the coupled balance equations for a large class of dissipative materials can be cast in the form of GENERIC (General Equations for Non-Equilibrium Reversible Irreversible Coupling). In dissipative solids (generalized standard materials), the state of a material point is described by dissipative internal variables in addition to the elastic deformation and the temperature. The framework GENERIC allows for an efficient derivation of thermodynamically consistent coupled field equations, while revealing additional underlying physical structures, like the role of the free energy as the driving potential for reversible effects and the role of the free entropy (Massieu potential) as the driving potential for dissipative effects. Applications to large and small-strain thermoplasticity are given. Moreover, for the quasistatic case, where the deformation can be statically eliminated, we derive a generalized gradient structure for the internal variable and the temperature with a reduced entropy as driving functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, H.-D.: Materials with Memory. Lecture Notes in Mathematics, vol. 1682. Springer, Berlin (1998)

  2. Bartels S., Roubíček T.: Thermoviscoplasticity at small strains. Z. Angew. Math. Mech. (ZAMM) 88, 735–754 (2008)

    Article  MATH  Google Scholar 

  3. Bartels, S., Roubíček, T.: Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. Math. Model. Numer. Anal. (M2AN) (2010). Submitted (Preprint INS, Univ. Bonn)

  4. Berdichevsky V.L.: Structure of equations of macrophysics. Phys. Rev. E 68, 066126 26 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dzyaloshinskii I.E., Volovick G.E.: Poisson brackets in condensed matter physics. Ann. Phys. 125, 67–97 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. Edwards B.J.: An analysis of single and double generator thermodynamics formalisms for the macroscopic description of complex fluids. J. Non-Equilib. Thermodyn. 23(4), 301–333 (1998)

    Article  ADS  MATH  Google Scholar 

  7. Grmela, M.: Particle and bracket formulations of kinetic equations. In: Fluids and Plasmas: Geometry and Dynamics (Boulder, Colo., 1983), vol. 28. Contemp. Math. Am. Math. Soc. Providence, RI, pp. 125–132 (1984)

  8. Grmela M.: Bracket formulation of dissipative time evolution equations. Phys. Lett. A 111(1–2), 36–40 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  9. Grmela M.: Reciprocity relations in thermodynamics. Phys. A 309(3–4), 304–328 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Grmela M.: Why GENERIC?. J. Non-Newtonian Fluid Mech. 165, 980–986 (2010)

    Article  MATH  Google Scholar 

  11. Grmela M., Öttinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E (3) 56(6), 6620–6632 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hackl K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45(5), 667–688 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hütter M., Tervoort T.A.: Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective. J. Non-Newtonian Fluid Mech. 152, 45–52 (2008)

    Article  MATH  Google Scholar 

  14. Hütter M., Tervoort T.A.: Thermodynamic considerations on non-isothermal finite anisotropic elasto-viscoplasticity. J. Non-Newtonian Fluid Mech. 152, 53–65 (2008)

    Article  MATH  Google Scholar 

  15. Kaufman A.: Dissipative Hamiltonian systems. Phys. Lett. A 100(8), 419–422 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. Muschik W., Gümbel S., Kröger M., Öttinger H.: A simple example for comparing generic with rational non-equilibrium thermodynamics. Physica A 285, 448–466 (2000)

    Article  ADS  MATH  Google Scholar 

  17. Mielke, A.: Hamiltonian and Lagrangian Flows on Center Manifolds. With Applications to Elliptic Variational Problems. Lecture Notes in Mathematics, vol. 1489. Springer, Berlin (1991)

  18. Mielke A.: A mathematical framework for generalized standard materials in the rate-independent case. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics, pp. 351–379. Springer, Berlin (2006)

    Google Scholar 

  19. Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity (2010). Submitted. WIAS preprint 1485

  20. Mielke, A.: On thermodynamically consistent models and gradient structures for thermoplasticity. GAMM Mitt. (2010) Submitted

  21. Morrison P.J.: A paradigm for joined Hamiltonian and dissipative systems. Phys. D 18(1–3), 410–419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Öttinger H.C., Grmela M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E (3) 56(6), 6633–6655 (1997)

    Article  MathSciNet  Google Scholar 

  23. Öttinger H.C.: Beyond Equilibrium Thermodynamics. Wiley, New Jersey (2005)

    Book  Google Scholar 

  24. Öttinger H.C.: Nonequilibrium thermodynamics for open systems. Phys. Rev. E (3) 73(3), 036126, 10 (2006)

    Article  Google Scholar 

  25. Penrose O., Fife P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43(1), 44–62 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Penrose O., Fife P.C.: On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model. Physica D 69(1–2), 107–113 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Roubíček T.: Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42, 256–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sprekels J., Zheng S.M.: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl. 176(1), 200–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ziegler, H., Wehrli, C.: The derivation of constitutive relations from the free energy and the dissipation function. In: Advances in Applied Mechanics, vol. 25, pp. 183–237. Academic Press, Orlando, FL (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Communicated by L. Truskinovsky.

Research partially supported by Deutsche Forschungsgemeinschaft within Matheon via the subproject C18 Analysis and numerics of multidimensional models for elastic phase transformations in shape-memory alloys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A. Formulation of thermoelastic dissipative material behavior using GENERIC. Continuum Mech. Thermodyn. 23, 233–256 (2011). https://doi.org/10.1007/s00161-010-0179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0179-0

Keywords

Mathematics Subject Classification (2000)

Navigation