Skip to main content
Log in

Hypertractions and hyperstresses convey the same mechanical information

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A strengthened and generalized version of the standard Virtual Work Principle is shown to imply, in addition to bulk and boundary balances, a one-to-one correspondence between surface and edge hypertractions and hyperstress fields in second-gradient continua. When edge hypertractions are constitutively taken null, the hyperstress is shown to take the form it has for a relevant example of second-gradient fluid-like material, referred to as a Navier–Stokes—α fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dunn J.E., Serrin J.: On the thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Forte S., Vianello M.: On surfaces stresses and edge forces. Rend. Mat. Appl. 8(3), 409–426 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fried E., Gurtin M.E.: On a continuum-mechanical theory for turbulence. Note Math. 27, 107–119 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Fried, E., Gurtin, M.E.: Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes α theory. Phys. Rev. E 75(5), (2007). doi:10.1103/PhysRevE.75.056306. Article Number: 056306

  7. Fried E., Gurtin M.E.: A continuum mechanical theory for turbulence: a generalized Navier-Stokes-α equation with boundary conditions. Theor. Comput. Fluid Dyn. 22(6), 433–470 (2008). doi:10.1007/s00162-008-0083-4

    Article  MATH  Google Scholar 

  8. Germain P.: Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus. C. R. Acad. Sci. Paris série A 274, 1051–1055 (1972)

    MATH  MathSciNet  Google Scholar 

  9. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient. J. Méc. 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  10. Germain P.: The method of virtual power in continuum mechanics. part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gurtin M.E., Murdoch I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1974)

    MathSciNet  Google Scholar 

  12. Korteweg D.J.: Sur la forme que prennent les equations du mouvement des fluides si l’on tient compte des forces capillaires. Arch. Neerl. Sci. Ex. Nat 6, 1–24 (1901)

    Google Scholar 

  13. Maugin G.A.: The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech. 35, 1–70 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Noll W., Virga E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111(1), 1–31 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Podio-Guidugli P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276 (2002)

    Article  MathSciNet  Google Scholar 

  16. Podio-Guidugli P.: On the aggregation state of simple materials. In: Šilhavý, M. (eds) Mathematical modeling of bodies with complicated bulk and boundary behavior, Quaderni di Matematica, pp. 159–168. Dipartimento di Matematica della Seconda Università di Napoli, Caserta (2007)

    Google Scholar 

  17. Podio-Guidugli, P., Vianello, M.: Fluidity and solidity notions for complex materials (2009) (in preparation)

  18. Toupin R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Toupin R.A.: Theories of elasticity with couple-stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Podio-Guidugli.

Additional information

Communicated by P. Rosakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podio-Guidugli, P., Vianello, M. Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22, 163–176 (2010). https://doi.org/10.1007/s00161-010-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0135-z

Keywords

Mathematics Subject Classification (2000)

Navigation