Skip to main content
Log in

Multiobjective optimization of laminated composite parts with curvilinear fibers using Kriging-based approaches

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper describes the multiobjective optimization of parts made with curvilinear fiber composites. Two structures are studied: a square plate and a fuselage-like section. The square plate is designed in two ways. First, classical lamination theory (CLT) is used to obtain the structural response for a plate with straight fibers designed for maximum buckling load and maximum stiffness. The same plate is then designed with curved fibers using finite element analysis (FEA) to determine the structural response. Next, the fuselage-like section is designed using the same FEA approach. The problems have three to twelve variables. To enable the resulting Pareto front to be visualized more clearly, only two objectives are considered. The first two optimization problems are unconstrained, while the last one is constrained by two project requirements. To overcome the problem of long computational run time when using FEA, Kriging-based approaches are used. Three such approaches suitable for multiobjective problems are compared: (i) the efficient global optimization algorithm (EGO) is applied to a single-objective function consisting of a weighted combination of the objectives, (ii) a technique that involves sequential maximization of the expected hypervolume improvement, and (iii) a novel approach proposed here based on sequential minimization of the variance of the predicted Pareto front. Comparison of the results using the inverted generational distance (IGD) metric revealed that the approach (iii) had the best performance (mean) and best robustness (standard deviation) for all the cases studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Symmetric laminates are laminates that the stacking sequence (lamination sequence) is symmetric with respect to the their mid-planes laminate, and balanced laminates those in which for each + θ ply orientation there is a − θ ply (of the same material and thickness) somewhere in the laminate.

References

  • ANSYS (2015a) ANSYS Composite PrepPost User’s Guide, Canonsburg, United States of America

  • ANSYS (2015b) ANSYS Mechanical user’s guide, Canonsburg, United States of America

  • Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722

    Article  MATH  Google Scholar 

  • Beume N, Naujoks B, Emmerich M (2007) Sms-emoa: Multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  • Binois M, Picheny V (2016) GPareto: Gaussian Processes for Pareto Front Estimation and Optimization. http://CRAN.R-project.org/package=GPareto, r package version 1.0.2

  • Carnell R (2012) LHS: Latin Hypercube Samples, http://CRAN.R-project.org/package=lhs, r package version 0.10

  • Chen B, Zeng W, Lin Y, Zhang D (2015) A new local search-based multiobjective optimization algorithm. IEEE Trans Evolutionary Comput 19(1):50–73

    Article  Google Scholar 

  • Corne DW, Jerram NR, Knowles JD, Oates MJ et al (2001) PESA-II: Region-Based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001)

  • Couckuyt I, Deschrijver D, Dhaene T (2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization. J Glob Optim 60(3):575–594

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, pp 403–449

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002a) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, IEEE, vol 1, pp 825–830

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002b) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Emmerich M, Beume N, Naujoks B (2005) An emo algorithm using the hypervolume measure as selection criterion. In: Evolutionary multi-criterion optimization. Springer, pp 62–76

  • Emmerich M, Deutz AH, Klinkenberg JW (2011) Hypervolume-based expected improvement: Monotonicity properties and exact computation. In: 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE, pp 2147–2154

  • Fang J, Sun G, Qiu N, Kim NH, Li Q (2017) On design optimization for structural crashworthiness and its state of the art. Struct Multidiscip Optim 55(3):1091–1119

    Article  MathSciNet  Google Scholar 

  • Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Pondicherry

    Book  Google Scholar 

  • Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45 (1):50–79

    Article  Google Scholar 

  • Fu G, Khu ST, Butler D (2008) Multiobjective optimisation of urban wastewater systems using parego: a comparison with nsga ii. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland

  • Ghiasi H, Pasini D, Lessard L (2010) Pareto frontier for simultaneous structural and manufacturing optimization of a composite part. Struct Multidiscip Optim 40(1–6):497–511

    Article  MATH  Google Scholar 

  • Ginsbourger D, Picheny V, Roustant O, Chevalier with contributions by Clément, Wagner T (2013) DiceOptim: Kriging-based optimization for computer experiments. http://CRAN.R-project.org/package=DiceOptim, r package version 1.4

  • Gürdal Z, Olmedo R (1993) In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept. AIAA J 31(4):751–758

    Article  MATH  Google Scholar 

  • Gürdal Z, Haftka RT, Hajela P (1999) Design and optimization of laminated composite materials. Wiley, New York

    Google Scholar 

  • Gürdal Z, Tatting BF, Wu C (2008) Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response. Compos A: Appl Sci Manuf 39(5):911–922

    Article  Google Scholar 

  • Honda S, Igarashi T, Narita Y (2013) Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using nsga-ii. Composites Part B: Engineering 45(1):1071–1078

    Article  Google Scholar 

  • Hupkens I, Emmerich M, Deutz A (2014) Faster computation of expected hypervolume improvement. Tech. rep., LIACS

    Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Knowles J (2006) Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10(1):50–66

    Article  Google Scholar 

  • Knowles J, Hughes EJ (2005) Multiobjective optimization on a budget of 250 evaluations. In: International Conference on Evolutionary Multi-Criterion Optimization. Springer, pp 176–190

  • Li M (2011) An improved kriging-assisted multi-objective genetic algorithm. J Mech Des 133(7):071, 008

    Article  Google Scholar 

  • Lopes CS, Gürdal Z, Camanho P (2010) Tailoring for strength of composite steered-fibre panels with cutouts. Compos A: Appl Sci Manuf 41(12):1760–1767

    Article  Google Scholar 

  • Martínez-Frutos J, Herrero-Pérez D (2016) Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J Glob Optim 64(1):97–115

    Article  MathSciNet  MATH  Google Scholar 

  • Mersmann O (2014) MCO: Multiple Criteria Optimization Algorithms and Related Functions. http://CRAN.R-project.org/package=mco, r package version 1.0-15.1

  • Murugan S, Friswell M (2013) Morphing wing flexible skins with curvilinear fiber composites. Compos Struct 99(May):69–75

    Article  Google Scholar 

  • Nik MA, Fayazbakhsh K, Pasini D, Lessard L (2012) Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos Struct 94(8):2306–2313

    Article  Google Scholar 

  • Parr J, Keane A, Forrester AI, Holden C (2012) Infill sampling criteria for surrogate-based optimization with constraint handling. Eng Optim 44(10):1147–1166

    Article  MATH  Google Scholar 

  • Passos A (2016) moko: Multi-Objective Kriging Optimization. https://CRAN.R-project.org/package=moko, r package version 1.0.0

  • Passos AG, Luersen MA, Steeves CA (2017) Optimal curved fibre orientations of a composite panel with cutout for improved buckling load using the efficient global optimization algorithm. Eng Optim 49(8):1354–1372

    Article  Google Scholar 

  • Pelletier JL, Vel SS (2006) Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Comput Struct 84(29):2065–2080

    Article  Google Scholar 

  • Raju G, Wu Z, Kim BC, Weaver PM (2012) Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions. Compos Struct 94(9):2961–2970

    Article  Google Scholar 

  • Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software 51(1):1–55

    Article  Google Scholar 

  • Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34(3):263–278

    Article  Google Scholar 

  • Shimoyama K, Jeong S, Obayashi S (2013) Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: 2013 IEEE Congress on Evolutionary computation (CEC), IEEE, pp 658–665

  • Stodieck O, Cooper JE, Weaver P, Kealy P (2015) Optimization of tow-steered composite wing laminates for aeroelastic tailoring. AIAA J 53(8):2203–2215

    Article  Google Scholar 

  • Tabatabaei M, Hakanen J, Hartikainen M, Miettinen K, Sindhya K (2015) A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct Multidiscip Optim 52(1):1–25

    Article  MathSciNet  Google Scholar 

  • Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. Tech. rep. , Citeseer

    Google Scholar 

  • Wu Z, Weaver PM, Raju G, Kim BC (2012) Buckling analysis and optimisation of variable angle tow composite plates. Thin-Walled Struct 60:163–172

    Article  Google Scholar 

  • Xiang Y, Gubian S, Suomela B, Hoeng J (2013) Generalized simulated annealing for efficient global optimization: the GenSA package for R. The R Journal Volume 5/1, June 2013 http://journal.r-project.org/

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization methods and applications, vol 63. Citeseer

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Parallel problem solving from nature. Springer, pp 292–301

  • Zitzler E, Laumanns M, Thiele L, Zitzler E, Zitzler E, Thiele L, Thiele L (2001) SPEA2: Improving The strength pareto evolutionary algorithm, Tech. rep., TIK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Passos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos, A.G., Luersen, M.A. Multiobjective optimization of laminated composite parts with curvilinear fibers using Kriging-based approaches. Struct Multidisc Optim 57, 1115–1127 (2018). https://doi.org/10.1007/s00158-017-1800-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1800-7

Keywords

Navigation