Skip to main content

Advertisement

Log in

Spatial Distribution of Mercury in the Surface Soils of the Urban Areas, Arak, Iran

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study assessed the baseline concentrations and spatial distribution of total mercury (Hg) in urban soils of the city of Arak, Iran. Concentrations of Hg were determined in soil collected from urban areas, and the spatial distribution was analyzed using the semivariogram approach in geostatistical technology. Mercury in soil ranged from 66.3 to 581 µg/kg. The experimental variogram of soil mercury concentrations was best-fitted by a spherical model. A spatial distribution map revealed that Hg concentration showed decreasing trends from south to north, west to east and center to suburb. Overall, the results showed that Hg concentrations in urban soils of Arak may be considered medium or low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway BJ (1995) Heavy metals in soils. Chapman and Hall, Glasgow

    Book  Google Scholar 

  • Appleton JD, Weeks JM, Calvez JPS, Beinhoff C (2006) Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Sci Total Environ 354:198–211

    Article  CAS  Google Scholar 

  • Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22:233–248

    Article  CAS  Google Scholar 

  • Callender E, Rice KC (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238

    Article  CAS  Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Chen X, Xia X, Wu S, Wang F, Guo X (2010) Mercury in urban soils with various types of land use in Beijing, China. Environ Pollut 158:48–54

    Article  CAS  Google Scholar 

  • Fang F, Wang Q, Li J (2004) Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Sci Total Environ 330:159–170

    Article  CAS  Google Scholar 

  • Fang F, Wang H, Lin Y (2011) Spatial distribution, bioavailability, and health risk assessment of soil Hg in Wuhu urban area, China. Environ Monit Assess 179:255–265

    Article  CAS  Google Scholar 

  • FIFA, Fertilizer Industry federation of Australia (2006) Australian soil fertility manual, 3rd edn. CSIRO Publishing, Collingwood

    Google Scholar 

  • Gillis AA, Miler DR (2000) Some local environmental effects on mercury emission and absorption at a soil surface. Sci Total Environ 260(1–3):191–200

    Article  CAS  Google Scholar 

  • Grangeon S, Guédron S, Astab J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183

    Article  CAS  Google Scholar 

  • Hojdova M, Navra T, Rohovec J (2008) Distribution and speciation of mercury in mine waste dumps. Bull Environ Contam Toxicol 80:237–241

    Article  CAS  Google Scholar 

  • Johansson K, Bergback B, Tyler G (2001) Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment. Water Air Soil Pollut Focus 1:279–297

    Article  CAS  Google Scholar 

  • Kot FS, Matyushkina LA (2002) Distribution of mercury in chemical fractions of contaminated urban soils of middle Amur. Russia. J Environ Monit 4(5):803–808

    Article  CAS  Google Scholar 

  • Lark RM, Ferguson RB (2004) Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma 118:39–53

    Article  CAS  Google Scholar 

  • Linde M, Bengtsson H, Oborn I (2001) Concentration and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut Focus 1:83–101

    Article  CAS  Google Scholar 

  • Liu XM, Wu JJ, Xu JM (2006) Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ Pollut 141:257–264

    Article  CAS  Google Scholar 

  • Liu J, Feng X, Zhu W, Zhang X, Yin R (2012) Spatial distribution and speciation of mercury and methyl mercury in the surface water of East River (Dongjiang) tributary of pearl river delta, South China. Environ Sci Pollut Res 19:105–112

    Article  CAS  Google Scholar 

  • Lu S, Wang H, Bai S (2009) Heavy metal contents and magnetic susceptibility of soils along an urban–rural gradient in rapidly growing city of eastern China. Environ Monit Assess 155:91–101

    Article  CAS  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily). Italy. Sci Total Environ 300(1–3):229–243

    Article  CAS  Google Scholar 

  • Miller EK, Vanarsdale A, Keeler GJ, Chalmers A, Poissant L, Kamman NC, Brulotte R (2005) Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology 14:53–70

    Article  CAS  Google Scholar 

  • Peltola P, Astrom M (2003) Urban geochemistry: a multimedia and multielement survey of a small town in Northern Europe. Environ Geochem Health 25:397–419

    Article  CAS  Google Scholar 

  • Reimann C, Caritat P (1998) Chemical elements in the environment: fact sheets for the geochemist and environmental scientist. Springer, Berlin p 398

    Book  Google Scholar 

  • Remy S, Prudent P, Hissler C, Probst JL, Krempp G (2003) Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors. Chemosphere 52:635–644

    Article  CAS  Google Scholar 

  • Rice KC (1999) Trace element concentrations in streambed sediment across the conterminous United States. Environ Sci Technol 33:2499–2504

    Article  CAS  Google Scholar 

  • Rodrigues S, Pereira ME, Duarte AC, Ajmone-Marsan F, Davidson CM, Grman H, Hossack I, Hursthouse AS, Ljung K, Martini C, Otabbong E, Reinoso R, Ruiz-Cortés E, Urquhart GJ, Vrščaj B (2006a) Mercury in urban soils: a comparison of local spatial variability in six European cities. Sci Total Environ 368:926–936

    Article  CAS  Google Scholar 

  • Rodrigues S, PereiraME Sarabando L, Lopes LD, Cachada A, Duarte A (2006b) Spatial distribution of total Hg in urban soils from an Atlantic coastal city (Aveiro, Portugal). Sci Total Environ 368:40–46

    Article  CAS  Google Scholar 

  • Santos-Francés F, García-Sánchez A, Alonso-Rojo P, Contreras F (2011) Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin. Venezuela. J Environ Manage 92(4):1268–1276

    Article  Google Scholar 

  • Tijhuis L, Brattli B, Sæther OM (2002) A geochemical survey of topsoil in the city of Oslo, Norway. Environ Geochem Health 24:67–94

    Article  CAS  Google Scholar 

  • USEPA,1996. Soil screening guidance: technical background document. EPA/540/R95/128

  • Vafaei R, Ostovan H, Incekara U, Pesic V (2007) Faunistic study of the aquatic beetles (Coleoptera: polyphaga) of Markazi Province (Central Iran) with new records. Arch Biol Sci Belgrade 59(3):239–242

    Article  Google Scholar 

  • Wang XS, Qin Y (2005) Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou. China. Environ Geo 49:10–18

    Article  CAS  Google Scholar 

  • Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304(1–3):209–214

    Article  CAS  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chichester, pp 89–96

    Google Scholar 

  • Won JH, Park JY, Lee TG (2007) Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmos Environ 41:7547–7552

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Adriano DC (1991) Interim environmental guidelines for cadmium and mercury in soils of China. Water Air Soil Pollut 57–58:733–743

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding provided for this study by the Tarbiat Modares University of Iran. Also the authors are grateful to Dr M. Solgi (Head of Department of Horticulture at Arak University) for his support and assistance in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisa Solgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgi, E., Esmaili-Sari, A. & Riyahi-Bakhtiari, A. Spatial Distribution of Mercury in the Surface Soils of the Urban Areas, Arak, Iran. Bull Environ Contam Toxicol 93, 710–715 (2014). https://doi.org/10.1007/s00128-014-1408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1408-1

Keywords

Navigation