Skip to main content
Log in

Residues of Pesticides in Honeybee (Apis mellifera carnica) Bee Bread and in Pollen Loads from Treated Apple Orchards

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Honey bee (Apis mellifera carnica) colonies were placed in two apple orchards treated with the insecticides diazinon and thiacloprid and the fungicide difenoconazole in accordance with a Protection Treatment Plan in the spring of 2007. Pollen and bee bread were collected from combs inside the hives. The residue of diazinon in pollen loads 10 days after orchard treatment was 0.09 mg/kg, and the same amount of residue was found in bee bread 16 days after treatment. In pollen loads 6 days after application 0.03 mg/kg of thiacloprid residues and 0.01 mg/kg of difenoconazole were found on the first day after application. Possible sub-lethal effects on individual honey bees and brood are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bonmatin JM, Moineau I, Charvet R, Fléché C, Colin ME, Bengsch ER (2003) A LC/APCIMS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75:2027–2033. doi:10.1021/ac020600b

    Article  CAS  Google Scholar 

  • Bossi R, Vejrup KV, Mogensen BB, Asman WAH (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography-tandem mass spectrometry. J Chromatogr A 957:27–36. doi:10.1016/S0021-9673(02)00312-6

    Article  CAS  Google Scholar 

  • Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J Econ Entomol 99:253–262

    CAS  Google Scholar 

  • Fillion J, Sauve F, Selwyn J (2000) Multiresidue method for the determination of residues of 251 pesticides in fruit and vegetables by gas chromatography/mass spectrometry and liquid chromatography with fluorescence detection. J AOAC Int 83:698–712

    CAS  Google Scholar 

  • FOOTPRINT (2007) The FOOTPRINT pesticide properties database. Database collated by the University of Hertfordshire as part of the EU-funded FOOTPRINT project (FP6-SSP-022704). http://www.eu-footprint.org/ppdb.html of subordinate document. Accessed 15 Jan 2008

  • Gregorc A, Bowen ID (2000) The histochemical characterisation of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, Amitraz and Oxytetracycline. Cell Biol Int 24:319–324. doi:10.1006/cbir.1999.0490

    Article  CAS  Google Scholar 

  • Gregorc A, Smodiš Škerl MI (2007) Toxicological and immunohistochemical testing of honey bees after oxalic acid and rotenone treatments. Apidologie 38:296–305. doi:10.1051/apido:2007014

    Article  CAS  Google Scholar 

  • Gregorc A, Pogacnik A, Bowen ID (2004) Cell death in honey bee (Apis mellifera) larvae treated with oxalic or formic acid. Apidologie 35:453–460. doi:10.1051/apido:2004037

    Article  CAS  Google Scholar 

  • Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393. doi:10.1016/S0167-8809(99)00044-4

    Article  Google Scholar 

  • Koch H, Weisser P (1997) Exposure of honey bees during pesticide application under field conditions. Apidologie 28:439–447. doi:10.1051/apido:19970610

    Article  Google Scholar 

  • Makovi CM, McMahon BM, FDA (ur.) (1999) Pesticide analytical manual, vol 1, Extraction with acetone, liquid–liquid partitioning with petroleum ether/methylene chloride. R.O.W. Sciences, Inc., 302–307

  • McKenzie KE, Winston ML (1989) Effects of sublethal exposure to diazinon on longevity and temporal division of labor in the honey bee (Hymenoptera: Apidae). J Econ Entomol 82:75–82

    Google Scholar 

  • Papaefthimiou C, Pavlidou V, Gregorc A, Theophilidis G (2002) The action of 2, 4-dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environ Toxicol Pharmacol 11:127–140. doi:10.1016/S1382-6689(01)00113-2

    Article  CAS  Google Scholar 

  • Porrini C, Sabatini AG, Girotti S, Fini F, Monaco L, Celli G, Bartolotti L, Ghini S (2003) The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull Insectol 56:147–152

    Google Scholar 

  • Rortais A, Arnold G, Halm MP, Touffet-Briens F (2005) Modes of honey bee exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36:71–83. doi:10.1051/apido:2004071

    Article  CAS  Google Scholar 

  • Rosiak KL (2002) The effects of two polychlorinated biphenyl mixtures on honey bee (Apis mellifera) foraging and hypopharyngeal gland development. Dissertation, Urbana, Illinois

  • Russel D, Meyer R, Bukowski J (1998) Potential impact of microencapsulated pesticides on New Jersey apiaries. Am Bee J 138:207–210

    Google Scholar 

  • Schmuck R, Schöning R, Stork A, Schramel O (2001) Risk posed to honey bees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manage Sci 57:225–238. doi:10.1002/ps.270

    Article  CAS  Google Scholar 

  • Silva-Zacarin ECM, Gregorc A, Silva de Moraes RLM (2006) In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honey bee larvae. Apidologie 37:507–516. doi:10.1051/apido:2006030

    Article  CAS  Google Scholar 

  • Thier HP, Zeumer H, DFG (ur.) (1987) Manual of pesticide residue analysis, vol 1, organochlorine, organophosphorus, nitrogen-containing and other pesticides. Weinheim, VCH, Verlagsgesellschaft, 383–400

  • Thier HP, Zeumer H, DFG (ur.) (1992) Manual of pesticide residue analysis, vol 2, cleanup method 6. Weinheim, VCH, Verlagsgesellschaft, 31–36

  • Thompson HM, Hunt LV (1999) Extrapolating from honey bees to bumble bees in pesticide risk assessment. Ecotoxicology 8:147–166. doi:10.1023/A:1026444029579

    Article  Google Scholar 

  • Villa S, Vighi M, Finizio A, Bolchi Serini G (2000) Risk assessment for honey bees from pesticide-exposed pollen. Ecotoxicology 9:287–297. doi:10.1023/A:1026522112328

    Article  CAS  Google Scholar 

  • Waller GD, Erickson BJ, Harvey J, Martin JH (1984) Effects of dimethoate on honey bees (Hymenoptera: Apidae) when applied to flowering lemons. J Econ Entomol 77:70–74

    CAS  Google Scholar 

  • Weick J, Thorn RS (2002) Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odour stimuli in the honey bee (Hymenoptera: Apidae). J Econ Entomol 95:227–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank to Roman Mavec and Janez Markuta, heads of the experimental orchards at Brdo and Čadovlje for their collaboration which made the experiments possible. Thanks are also due to Marjan Kokalj for his technical assistance and help in collecting samples. This study was funded by the Slovenian Research Agency, Project Number L7-7602 and V4-0484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Ivana Smodiš Škerl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smodiš Škerl, M.I., Velikonja Bolta, Š., Baša Česnik, H. et al. Residues of Pesticides in Honeybee (Apis mellifera carnica) Bee Bread and in Pollen Loads from Treated Apple Orchards. Bull Environ Contam Toxicol 83, 374–377 (2009). https://doi.org/10.1007/s00128-009-9762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9762-0

Keywords

Navigation