Skip to main content
Log in

Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Mississippi Valley-type (MVT) Zn–Pb–Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb–Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Réocin, Northern Spain; Trèves, Southern France; and Cracow-Silesia, Poland), which show notable similarities in terms of their age, mineralogy. and mineral chemistry to the MVT deposit near Wiesloch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akinfiev NN, Tagirov BR (2006) Effect of selenium on silver transport and precipitation by solutions: thermodynamic description of the Ag-Se-S-Cl-O-H SYstem. Geol Ore Depos 48:402–413

    Article  Google Scholar 

  • Amcoff Ö (1976) The solubility of silver and antimony in galena. Neues Jb Mineralog Monatsh 6:247–261

    Google Scholar 

  • Anderson GM (1975) Precipitation of Mississippi Valley-type ores. Econ Geol 70:937–942

    Article  Google Scholar 

  • Anderson GM (2008) The mixing hypothesis and the origin of Mississippi Valley-Type ore deposits. Econ Geol 103:1683–1690

    Article  Google Scholar 

  • Azaroual M, Fouillac C (1999) Thermodynamic modelling of modern basinal brines from the Paris Basin: Implications for MVT ore genesis. In: Stanley CJ (ed) Mineral deposits. Processes to processing. Balkema, Rotterdam, pp 809–812

    Google Scholar 

  • Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7:1–25

    Article  Google Scholar 

  • Banks DA, Yardley BWD (1992) Crush-leach analysis of fluid inclusions in small natural and synthetic samples. Geochim Cosmochim Acta 56:245–248

    Article  Google Scholar 

  • Behr HJ, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralization in the Federal Republic of Germany: a study by Neutron Activation Analysis. Chem Geol 61:65–77

    Article  Google Scholar 

  • Behr HJ, Horn EE, Frentzel-Beyme K, Reutel C (1987) Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany. Chem Geol 61:273–285

    Article  Google Scholar 

  • Bliedtner M, Martin M (1986) Erz- und Minerallagerstätten des Mittleren Schwarzwaldes. LGRB, Freiburg, p 782

    Google Scholar 

  • Brockamp O, Zuther M (1983) Das Uranvorkommen Müllenbach/Baden-Baden, eine epigenetisch-hydrothermale Imprägnationslagerstätte in Sedimenten des Oberkarbon, Teil II: Das Nebengestein. Neues Jahrb Mineral Abh 148:22–33

    Google Scholar 

  • Brockamp O, Clauer N, Zuther M (1994) K-Ar dating of episodic Mesozoic fluid migrations along the fault system of Gernsbach within the Modanubian/Saxoturingian (Northern Black Forest, Germany). Geol Rundsch 83:180–185

    Article  Google Scholar 

  • Brun JP, Gutscher M-A, DEKORP-ECORS teams (1992) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophysics 208:139–147

    Article  Google Scholar 

  • Carpenter AB, Trout ML, Pickett EE (1974) Preliminary report on the origin and chemical evolution of lead-and-zinc-rich oil field brines in central Mississippi. Econ Geol 69:1191–1206

    Article  Google Scholar 

  • Claypool GE, Holser WT, Kaplan TR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chem Geol 28:199–260

    Article  Google Scholar 

  • Collins AG (1975) Geochemistry of oilfield waters. Elsevier, Amsterdam

    Google Scholar 

  • Cooke DR, Bull SW, Large RR, McGoldrick PJ (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits. Econ Geol 95:1–17

    Google Scholar 

  • Corbella M, Ayora C (2003) Role of fluid mixing in deep dissolution of carbonates. Geologica Acta 1:305–313

    Google Scholar 

  • Dolejs D, Wagner T (2008) Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks. Geochim Cosmochim Acta 72:526–553

    Article  Google Scholar 

  • Friedel G, Schweizer V (1989) Zur Stratigraphie der Sulfatfazies im Mittleren Muschelkalk von Baden-Württemberg (Süddeutschland). Jahreshefte des geologischen Landesamtes Baden-Württemberg 31:69–88

    Google Scholar 

  • Friedmann I, O'Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geological Survey, Professional Paper 44-KK

  • Geisler-Cussey DD (1987) Middle muschelkalk evaporitic deposits in eastern Paris basin. In: Peryt TM (ed) Evaporite Basins, vol 13. Springer, Berlin, pp 89–121

    Chapter  Google Scholar 

  • Geyer OF, Gwinner MP (1986) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart

    Google Scholar 

  • Giesmann A, Jäger H, Norman A, Brand W (1994) On-line sulfur isotope determination using an element analyzer coupled to mass spectrometer. Anal Chem 66:2816–2819

    Article  Google Scholar 

  • Giordano TH (2002) Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity. Geochem Trans 3:56–72

    Article  Google Scholar 

  • Hagdorn H, Simon T (2005) Der Muschelkalk in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41:143–158

    Article  Google Scholar 

  • Hanor JS (1996) Controls on the solubilization of dissolved lead and zinc in basinal brines. Soc Econ Geol Spec Publ 4:483–500

    Google Scholar 

  • He K, Stober I, Bucher K (1999) Chemical evolution of thermal waters from limestone aquifers of the Southern Upper Rhine Valley. Appl Geochem 14:223–235

    Article  Google Scholar 

  • Hildebrandt LH (1997) Schwermetallbelastungen durch den historischen Bergbau im Raum Wiesloch. Handb Boden 7:1–191

    Google Scholar 

  • Hildebrandt LH (1998) Die Schwermetallbelastung durch den historischen Bergbau im Raum Wiesloch. Dissertation, University of Heidelberg

  • Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci 96:979–1002

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Jacob DE (2006) High sensitivity analysis of trace element poor geological reference glasses by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Geostandards Geoanalytical Res 30(3):221–235

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) Supcrt92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi salt dome basin, U.S.A. Appl Geochem 2:543–561

    Article  Google Scholar 

  • Kleinschnitz M (2009) Karte der mineralischen Rohstoffe von Baden-Württemberg 1:50 000, Erläuterungen zu Blatt L 6718 Heidelberg-Süd. Landesamt für Geologie, Rohstoffe und Bergbau, Freiburg

    Google Scholar 

  • Knaust D (1998) Trace fossils and ichnofabrics on the Lower Muschelkalk ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geol Rundsch 87:21–31

    Article  Google Scholar 

  • Kneer S (2006) Geochemische Untersuchungen der Gangartmineralisationen im Bergbarevier Badenweiler-Sehringen. Diploma thesis, University of Tübingen

  • Land LS (1995) Na-Ca-Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: products of diagenesis. Geochim Cosmochim Acta 59:2163–2174

    Article  Google Scholar 

  • Land LS, Macpherson GL, Mack LE (1988) The geochemistry of saline formation waters, Miocene, offshore Louisiana. Trans Gulf Coast Assoc Geol Soc 38:503–511

    Google Scholar 

  • Leach DL, Viets JG, Kozlowski A, Kibitlewski S (1996) Geology, geochemistry, and genesis of the Silesia-Cracow zinc-lead district, Southern Poland. Soc Econ Geol Spec Pub 4:144–170

    Google Scholar 

  • Leach DL, Macquar J-C, Lagneau V, Leventhal J, Emsbo P, Premo W (2006) Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France. Geofluids 6:24–44

    Article  Google Scholar 

  • Lorenz GD (2002) Diagenese der känozoischen Sedimente des Oberrheingrabens als Hinweis der tertiären Fluidentwicklung. Dissertation, University of Heidelberg

  • Lüders V (1994) Geochemische Untersuchungen an Gangartmineralen aus dem Bergbaurevier Freiamt-Sexau und dem Badenweiler-Quarzriff (Schwarzwald). Abhandlungen des geologischen Landesamtes Baden-Württemberg 14:173–190

    Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Article  Google Scholar 

  • Martin JT, Lowell RP (1998) Precipitation of quartz during high-temperature, fracture-controlled hydrothermal upflow at ocean ridges: Equilibrium versus linear kinetics. J Geophys Res 105(B1):869–882

    Article  Google Scholar 

  • Meier L, Eisbacher GH (1991) Crustal kinematics and deep structure of the northern Rhine Grabe, Germany. Tectonics 10:621–630

    Article  Google Scholar 

  • Metz R, Richter M, Schürenberg H (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes. Geologisches Jahrbuch, Beihefte, 29

    Google Scholar 

  • Möller P, Woith H, Dulski P, Lüders V, Erzinger J, Kämpf H, Pekdeger A, Hansen B, Lodemann M, Banks D (2005) Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids 5:28–41

    Article  Google Scholar 

  • Muchez P, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) 7: Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27(1–4):241–267

    Article  Google Scholar 

  • Oelkers EH, Helgeson HC (1990) Triple-ion anions and poynuclear complexing in supercritical electrolyte solutions. Geochim Cosmochim Acta 54:727–738

    Article  Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 517–611

    Google Scholar 

  • Plumlee G, Leach DL, Hofstra AH, Landis GP, Rowan EL, Viets JG (1994) Chemical reaction path modeling of ore deposition in Mississippi Valley-type deposits of the Ozark region, U.S. mid-continent. Econ Geol 89:1361–1383

    Article  Google Scholar 

  • Pöppelreiter M, Borkhataria R, Aigner T, Pipping K (2005) Production from Muschelkalk carbonates (Triassic NE Netherlands): unique play or overlooked opportunity? In: Doré AG, Vining BA (ed) Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference, Geological Society, London, pp 299–315

  • Preßler H (1927) Die Zink- und Bleierzlagerstätten bei Wiesloch in Baden. Meldearbeit der TU Clausthal

  • Ramdohr P (1952) Über den Mineralbestand der Zink- und Bleilagerstätte von Wiesloch in Baden. Fortschritte der Mineralogie 31:13–14

    Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 198.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey, Bulletin 2131: 461

  • Rupf I, Nitsch E (2008) Das geologische Landesmodell von Baden-Württemberg: Datengrundlagen, technische Umsetzung und erste geologische Ergebnisse. LGRB-Informationen 21

  • Sass-Gustkiewicz M, Dzulynski S, Ridge JD (1982) The Emplacement of zinc-lead sulfide ores in the Upper Silesian District—a contribution to the understanding of Mississippi Valley-type deposits. Econ Geol 77:392–412

    Article  Google Scholar 

  • Schmidt A (1881) Die Zinklagerstätten von Wiesloch (Baden). Verh nathist-med Ver Heidelberg 2:369–490

    Google Scholar 

  • Schmitt B (1988) Mineralogische und petrographische Untersuchungen an schichtgebundenen Cu- und Pb-Lagerstätten im Saarland und in Lothringen (Buntsandstein) sowie an der schichtgebundenen Zn-Pb-Lagerstätte Wiesloch (Muschelkalk). Dissertation, University of Heidelberg

  • Schneiderhöhn H (1943) Zur Entstehung der Zink- und Schwefelkieslagerstätten von Wiesloch (Baden). Metall Erz 40:25–26

    Google Scholar 

  • Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhinegraben: insights from three-dimensional thermomechanical modelling. Int Jounal Earth Sci 94:732–750

    Article  Google Scholar 

  • Schwinn G, Wagner T, Baatartsogt B, Markl G (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982

    Article  Google Scholar 

  • Seeliger E (1963) Die Paragenese der Pb-Zn-Erzlagerstätte am Gänsberg bei Wiesloch (Baden) und ihre genetischen Beziehungen zu den Gängen im Odenwaldkristallin, zu Alt Wiesloch und der Vererzung der Trias des Kraichgaues. Jahreshefte des geologischen Landesamtes Baden-Württemberg 6:239–299

    Google Scholar 

  • Shock EL, Oelkers EH, Johnson JW, Sverjensky DA, Helgeson HC (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants and standard partial molal properties to 1000°C and 5 kbar. J Chem Soc Faraday Trans 88:803–826

    Article  Google Scholar 

  • Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geological fluids: correlations among standard molal thermodynamic properties of queous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950

    Article  Google Scholar 

  • Shvarov YV, Bastrakov E (1999) HCh: a Software Package for Geochemical Equilibrium Modeling. Record 1999/25, Australian Geological Survey Organisation, Canberra, Australia

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral chemistry and fluid evolution of the hydrothermal Wenzel deposit, southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Min 45:1147–1176

    Article  Google Scholar 

  • Staude S, Bons PD, Markl G (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: an example from SW Germany. Earth Planet Sci Lett 286:387–395

    Article  Google Scholar 

  • Stober I, Bucher K (2000) Herkunft der Salinität in Tiefenwässern des Grundgebirges unter besonderer Berücksichtigung der Kristallinwässer des Schwarzwaldes. Grundwasser 3:125–140

    Article  Google Scholar 

  • Stoffel B, Appold MS, Wilkinson JJ, McClean NA, Jeffries TE (2008) Geochemistry and evolution of Mississippi Valley-type mineralizing brines from the Tri-State and Northern Arkansas district determined by LA-ICP-MS microanalysis of fluid inclusions. Econ Geol 103:1411–1435

    Article  Google Scholar 

  • Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim Cosmochim Acta 35:309–325

    Article  Google Scholar 

  • Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61:1359–1412

    Article  Google Scholar 

  • Symons DTA, Lewchuk MT, Kawasaki K, Velasco F, Leach DL (2009) The Réocin zinc-lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body. Miner Deposita 44:867–880

    Article  Google Scholar 

  • Velasco F, Herrero JM, Yusta I, Alonso JA, Seebold I, Leach D (2003) Geology and Geochemistry of the Réocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain. Econ Geol 98:1371–1396

    Article  Google Scholar 

  • Walenta K, Wimmenauer W (1961) Der Mineralbestand des Michaelganges im Weiler bei Lahr (Schwarzwald). Jahreshefte des geologischen Landesamtes Baden-Württemberg 4:7–37

    Google Scholar 

  • Walchner FA (1851) Über das Vorkommen des Galmeis bei Wiesloch. Z Deutsch Geol Ges 3:358–360

    Google Scholar 

  • Walz H (1851) Das Galmeilager zu Wiesloch bei Heidelberg an der oberen Bergstrasse. Arch Pharm 66:368–370

    Google Scholar 

  • Wilkinson JJ, Eyre SL, Boyce AJ (2005) Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen Mine. Econ Geol 100:63–86

    Article  Google Scholar 

  • Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323:764–767

    Article  Google Scholar 

  • Yardley BW (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Article  Google Scholar 

Download references

Acknowledgements

We express our thanks to Thomas Wagner, Thomas Wenzel, Udo Neumann, and Sebastian Staude for their help and insightful discussions. Wayne Premo is greatly acknowledged for the U–Pb data. The Bundesanstalt für Geologie und Rohstoffe (BGR), Georg Wittmer, Adam Seigfried, and the University of Heidelberg are thanked for sample material. The Heidelberg Zement AG (Dr. Schneider), and the Hessler quarry (Peter Gramespacher) are thanked for access to their quarries and their support. Financial support for this work was granted by the University of Tübingen (Promotionsverbund Wiesloch) and by the Wilhem Schuler Stiftung (Travel Grant to the US Geological Survey), for which we are grateful. We also greatly acknowledge the receipt of a Gledden Senior Fellowship from UWA to David L Leach. Moreover, Heinrich Taubald, Bernd Steinhilber, Indra Gill-Kopp, Garth Graham, Erin Marsh, and Florian Ströbele are greatly acknowledged for data, help, and discussions. Moreover, we greatly acknowledge the very detailed and constructive reviews of Ulrich Hein and Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Markl.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfaff, K., Hildebrandt, L.H., Leach, D.L. et al. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Miner Deposita 45, 647–666 (2010). https://doi.org/10.1007/s00126-010-0296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0296-5

Keywords

Navigation