Skip to main content

Advertisement

Log in

Genomic selection can accelerate the biofortification of spring wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genomic selection enabled accurate prediction for the concentration of 13 nutritional element traits in wheat.

Abstract

Wheat biofortification is one of the most sustainable strategies to alleviate mineral deficiency in human diets. Here, we investigated the potential of genomic selection using BayesR and Bayesian ridge regression (BRR) models to predict grain yield (YLD) and the concentration of 13 nutritional elements in grains (B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P and Zn) using a population of 1470 spring wheat lines. The lines were grown in replicated field trials with two times of sowing (TOS) at 3 locations (Narrabri-NSW, all lines; Merredin-WA and Horsham-VIC, 200 core lines). Narrow-sense heritability across environments (locations/TOS) ranged from 0.09 to 0.45. Co, K, Na and Ca showed low to negative genetic correlations with other traits including YLD, while the remaining traits were negatively correlated with YLD. When all environments were included in the reference population, medium to high prediction accuracy was observed for the different traits across environments. BayesR had higher average prediction accuracy for mineral concentrations (r = 0.55) compared to BRR (r = 0.48) across all traits and environments but both methods had comparable accuracies for YLD. We also investigated the utility of one or two locations (reference locations) to predict the remaining location(s), as well as the ability of one TOS to predict the other. Under these scenarios, BayesR and BRR showed comparable performance but with lower prediction accuracy compared to the scenario of predicting reference environments for new lines. Our study demonstrates the potential of genomic selection for enriching wheat grain with nutritional elements in biofortification breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aciksoz SB, Yazici A, Ozturk L, Cakmak I (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349(1–2):215–225

    Article  CAS  Google Scholar 

  • Ali MW, Borrill P (2020) Applying genomic resources to accelerate wheat biofortification. Heredity. https://doi.org/10.1038/s41437-020-0326-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Alina VR, Carmen MC, Sevastita M et al (2019) Food fortification through innovative technologies, food engineering. IntechOpen. https://doi.org/10.5772/intechopen.82249

    Article  Google Scholar 

  • Alomari DZ, Eggert K, Von Wirén N, Polley A, Plieske J, Ganal MW et al (2019) Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int J Mol Sci 20(1):76

    Article  CAS  Google Scholar 

  • Amiri R, Bahraminejad S, Sasani S, Jalali-Honarmand S, Fakhri R (2015) Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. Eur J Agron 67:20–26

    Article  CAS  Google Scholar 

  • Andersson MS, Pfeiffer WH, Tohme J (2014) Enhancing nutritional quality in crops via genomics approaches. In: Tuberosa R, Graner A, Frison E (eds) Genomics of Plant Genetic Resources. Springer International Publishing, Netherlands, pp 417–429

    Chapter  Google Scholar 

  • Arora S, Cheema J, Poland J, Uauy C, Chhuneja P (2019) Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front Plant Sci 10:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32(7–8):921–950

    Article  CAS  Google Scholar 

  • Baxter I (2010) Ionomics: The functional genomics of elements. Briefings Funct Genom 9(2):149–156

    Article  CAS  Google Scholar 

  • Beal T, Massiot E, Arsenault JE, Smith MR, Hijmans RJ (2017) Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PloS ONE 12(4):e0175554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhatta M, Baenziger PS, Waters BM, Poudel R, Belamkar V, Poland J, Morgounov A (2018) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19(10):3237

    Article  PubMed Central  CAS  Google Scholar 

  • Branca F, Ferrari M (2002) Impact of micronutrient deficiencies on growth: the stunting syndrome. Ann Nutr Metab 46(Suppl. 1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172–180

    Article  Google Scholar 

  • De Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • de los Campos G et al (2013) Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics 193(2):327–345

    Article  PubMed  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • Dunckel S, Crossa J, Wu S, Bonnett D, Poland J (2017) Genomic Selection for Increased Yield in Synthetic-Derived Wheat. Crop Sci 57(2):713–725

    Article  Google Scholar 

  • DuPont FM, Altenbach SB (2003) Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 38(2):133–146

    Article  CAS  Google Scholar 

  • Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM et al (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 95(7):4114–4129

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158 (Australian Centre for International Agricultural Research, 2014).

  • Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml User Guide Release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, United Kingdom

  • Golden MH (1991) The nature of nutritional deficiency in relation to growth failure and poverty. Acta Paediatr 80:95–110

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03709-7

    Article  PubMed  Google Scholar 

  • Guzman C, Medina-Larque AS, Velu G (2014) Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. J Cereal Sci 60:617–622

    Article  CAS  Google Scholar 

  • Harding KL, Aguayo VM, Webb P (2018) Hidden hunger in South Asia: a review of recent trends and persistent challenges. Public Health Nutr 21(4):785–795

    Article  PubMed  Google Scholar 

  • He S, Thistlethwaite R, Forrest K, Shi F, Hayden MJ, Trethowan R, Daetwyler HD (2019) Extension of a haplotype-based genomic prediction model to manage multi-environment wheat data using environmental covariates. Theor Appl Genet 132(11):3143–3154

    Article  CAS  PubMed  Google Scholar 

  • Hunt JR, Lilley JM, Trevaskis B, Flohr BM, Peake A, Fletcher A et al (2019) Early sowing systems can boost Australian wheat yields despite recent climate change. Nat Clim Chang 9(3):244–247

    Article  Google Scholar 

  • Joukhadar R, Hollaway G, Shi F, Kant S, Forrest K, Wong D et al (2020) Genome-wide association reveals a complex architecture for rust resistance in 2300 worldwide bread wheat accessions screened under various Australian conditions. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03626-9

    Article  PubMed  Google Scholar 

  • Joukhadar R, Thistlethwaite R, Trethowan R, Keeble-Gagnère G, Hayden MJ, Ullah S, Daetwyler HD (2021) Meta-analysis of genome-wide association studies reveal common loci controlling agronomic and quality traits in a wide range of normal and heat stressed environments. Theor Appl Genet. https://doi.org/10.1007/s00122-021-03809-y

    Article  PubMed  Google Scholar 

  • Kogan F, Guo W, Yang W, Harlan S (2018) Space-based vegetation health for wheat yield modeling and prediction in Australia. J Appl Remote Sensing 12(2):026002

    Google Scholar 

  • Lee SH, van der Werf JH (2016) MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 32:1420–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu OR, Molina R, Wilson M, Halpern BS (2018) Global opportunities for mariculture development to promote human nutrition. Peer J 6:e4733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe NM, Zaman M, Moran VH, Ohly H, Sinclair J, Fatima S et al (2020) Biofortification of wheat with zinc for eliminating deficiency in Pakistan: study protocol for a cluster-randomised, double-blind, controlled effectiveness study (BIZIFED2). BMJ open 10(11):e039231

    Article  PubMed  PubMed Central  Google Scholar 

  • Manickavelu A, Hattori T, Yamaoka S, Yoshimura K, Kondou Y, Onogi A et al (2017) Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PloS ONE 12(1):e0169416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5:2383–2390

    Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H et al (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155(1–2):193–203

    Article  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in Australian sodic soils. Soil Res 31(6):801–819

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21(4):392–396

    Article  Google Scholar 

  • Palmer L, Stangoulis J (2018) Changes in the Elemental and Metabolite Profile of Wheat Phloem Sap during Grain Filling Indicate a Dynamic between Plant Maturity and Time of Day. Metabolites 8(3):53

    Article  PubMed Central  CAS  Google Scholar 

  • Pérez P, de Los Campos G (2014) Genome-wide regression & prediction with the BGLR statistical package. Genetics 198:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rodríguez P, Montesinos-López OA, Montesinos-López A, Crossa J (2020) Bayesian regularized quantile regression: A robust alternative for genome-based prediction of skewed data. Crop J 8(5):713–722

    Article  Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J et al (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes Genomes Genetics 6(9):2799–2808

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini DK, Devi P, Kaushik P (2020) Advances in genomic interventions for wheat biofortification: a review. Agronomy 10(1):62

    Article  CAS  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. The Lancet 365(9457):442–444

    Article  Google Scholar 

  • Sollins P, Robertson GP, Uehara G (1988) Nutrient mobility in variable-and permanent-charge soils. Biogeochemistry 6(3):181–199

    Article  Google Scholar 

  • Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants 4:728–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein AJ, Qaim M (2007) The human and economic cost of hidden hunger. Food Nutr Bull 28(2):125–134

    Article  PubMed  Google Scholar 

  • Trethowan RM, Reynolds MP, Sayre KD, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Annals Appl Biol 146:404–413

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Velu G, Singh RP (2019) Genomic Approaches for Biofortification of Grain Zinc and Iron in Wheat. In: Qureshi A, Dar Z, Wani S (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_9

  • Velu G, Singh R, Huerta-Espino J, Pena J, Ortiz-Monasterio I (2011) Breeding for enhanced Zn and Fe concentration in CIMMYT spring wheat germplasm. Czech J Genet Plant Breed 47:S174–S177

    Article  CAS  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I et al (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372

    Article  CAS  Google Scholar 

  • Velu G, Guzman C, Mondal S, Autrique JE, Huerta J, Singh RP (2016a) Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat. J Cereal Sci 69:182–186

    Article  CAS  Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P et al (2016b) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129(8):1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch, R.M. (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z (Ed.) Mineral Nutrition of Crops: Fundamental Mechanisms and Implications, CRC Press: Boca Raton, FL, USA, pp. 205–226. ISBN 978-1-56022-880-6

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60(1–2):1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal Methods 3(12):2854–2863

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60(1–2):11–26

    Article  Google Scholar 

  • Yan W, Kang MS (2002) Cultivar evaluation based on multiple traits. In: Yan W, Kang M (eds) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press Boca Raton, Fla, USA, pp 121–158

    Chapter  Google Scholar 

  • Zhang Y, Shi R, Rezaul KM, Zhang F, Zou C (2010) Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J Agric Food Chem 58(23):12268–12274

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49(2):290–295

    Article  CAS  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ et al (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361(1–2):119–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Grains Research and Development Corporation, University of Sydney, and Agriculture Victoria under the project US00081, which made this research possible.

Funding

Grain Research and Development Corporation, University of Sydney, and Agriculture Victoria under the project US00081.

Author information

Authors and Affiliations

Authors

Contributions

HD,RiT, RJ: planned the study; RJ: analysed the data and drafted the manuscript; ReT,RiT,JS,SC phenotyped the population; MH: provided the genotype data; HD: supervised the study; all authors read, edited and approved the final copy of the manuscript.

Corresponding author

Correspondence to Reem Joukhadar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jessica Rutkoski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 56 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joukhadar, R., Thistlethwaite, R., Trethowan, R.M. et al. Genomic selection can accelerate the biofortification of spring wheat. Theor Appl Genet 134, 3339–3350 (2021). https://doi.org/10.1007/s00122-021-03900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03900-4

Navigation