Skip to main content

Advertisement

Log in

Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel process for the production of transgenic alfalfa varieties.

Abstract

Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn IP (2008) Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiol 146:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves JM, Chikhi L, Amorim A, Lopes AM (2014) The 8p23 inversion polymorphism determines local recombination heterogeneity across human populations. Genome Biol Evol 6:921–930

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayala D, Fontaine MC, Cohuet A, Fontenille D, Vitalis R, Simard F (2011) Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. Mol Biol Evol 28:745–758

    Article  CAS  PubMed  Google Scholar 

  • Beazley KA, Ferreira KL, Fitzpatrick SN, McCaslin MH, Reyes CC (2012) Glyphosate tolerant alfalfa events and methods for detection thereof (US8124848). Monsanto Technology Llc

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busbice T, Hill R, Carnahan H (1972) Genetics and breeding procedures. Alfalfa Sci Technol 15:283–318

    Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    Article  CAS  PubMed  Google Scholar 

  • CERA (2011) A review of the environmental safety of the PAT protein. Environ Biosaf Res 10:73–101

    Google Scholar 

  • Dragićević M, Platiša J, Nikolić R, Todorović S, Bogdanović M, Mitić N, Simonović A (2012) Herbicide phosphinothricin causes direct stimulation hormesis. Dose-Response 11:dose-response.1

    Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Feder JL, Nosil P (2009) Chromosomal inversions and species differences: when are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution; Int J Org Evol 63:3061–3075

    Article  Google Scholar 

  • Garcia AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Green JM (2014) Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 70:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Grohmann L, Brunen-Nieweler C, Nemeth A, Waiblinger HU (2009) Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. J Agric Food Chem 57:8913–8920

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM, Weeks AR (2004) Chromosomal inversion polymorphisms and adaptation. Trends Ecol Evol 19:482–488

    Article  PubMed  Google Scholar 

  • ILSI (2017) ILSI Research Foundation. GM Crop Database. ILSI Research Foundation, Washington D.C.

  • Jozefkowicz C, Bottero E, Pascuan C, Pagano E, Ayub ND, Soto G (2016) Minimizing the time and cost of production of transgenic alfalfa libraries using the highly efficient completely sequenced vector pPZP200BAR. Plant Cell Rep 35:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J 18:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Hannoufa A, Yu P (2017) The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. Int J Mol Sci 18:298

    Article  PubMed Central  Google Scholar 

  • Liang GH, Skinner DZ (eds) (2004) Genetically modified crops: their development, uses, and risks. Food Products Press, Binghamton

    Google Scholar 

  • Lopes AR, Bello D, Prieto-Fernandez A, Trasar-Cepeda C, Manaia CM, Nunes OC (2015) Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system. Environ Sci Pollut Res Int 22:11690–11699

    Article  CAS  PubMed  Google Scholar 

  • McCaslin MH, Temple SJ, Tofte JE (2002) Methods for maximizing expression of transgenic traits in autopolyploid plants. US 2002/0042928

  • Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolić R, Zdravković-Korać S, Ninković S, Dragićević M, Miljuš-Đukić J, Banović B, Bohanec B, Savić J, Mitić N (2013) Fertile transgenic Lotus corniculatus resistant to the non-selective herbicide phosphinothricin. Ann Appl Biol 163:475–493

    Google Scholar 

  • Noor MA, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rogan G, Fitzpatrick (2004) Petition for Determination of Nonregulated Status: Roundup Ready Alfalfa (Medicago sativa L.) Events J101 and J163. USDA Petition Number 04-110-01P

  • Rubiales D (2014) Alfalfa: back to the future. J Int Legume Soc. ISSN: 2340-1559

  • Rumbaugh MD, Caddel JL, Rowe DE (1988) Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8:e63666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Stritzler M, Lisi C, Alleva K, Pagano ME, Ardila F, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2011) Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J Exp Bot 62:5699–5711

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    Article  CAS  PubMed  Google Scholar 

  • Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Nat Biotechnol 11:835–836

    Article  CAS  Google Scholar 

  • Vermeersch L, De Winne N, Nolf J, Bleys A, Kovarik A, Depicker A (2013) Transitive RNA silencing signals induce cytosine methylation of a transgenic but not an endogenous target. Plant J 74:867–879

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Wu J, He C (2010) Induction of chromosomal inversion by integration of T-DNA in the rice genome. J Genet Genom 37:189–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank IGEAF-CICVyA and EEA Manfredi for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Soto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ian D Godwin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jozefkowicz, C., Frare, R., Fox, R. et al. Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions. Theor Appl Genet 131, 1111–1123 (2018). https://doi.org/10.1007/s00122-018-3062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3062-1

Navigation