Skip to main content
Log in

Genetic and transcriptomic analyses of lignin- and lodging-related traits in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Candidate genes associated with lignin and lodging traits were identified by combining phenotypic, genotypic, and gene expression data in B. napus.

Abstract

Brassica napus is one of the world’s most important oilseed crops, but its yield can be dramatically reduced by lodging, bending, and falling of its vertical stems. Lignin has been shown to contribute to stem mechanical strength. In this study, we found that the syringyl/guaiacyl (S/G) monolignol ratio exhibits a significant negative correlation with disease and lodging resistance. A total of 92 and 50 SNP and SSR loci, respectively, were found to be significantly associated with five traits, breaking force, breaking strength, lodging coefficient, acid detergent lignin content, and the S/G monolignol ratio using GWAS. To identify novel genes involved in lignin biosynthesis, transcriptome sequencing of high- (H) and low (L)-ADL content accessions was performed. The up-regulated genes were mainly involved in glycoside catabolic processes (especially glucosinolate catabolism) and cell wall biogenesis, while down-regulated genes were involved in glucosinolate biosynthesis, indicating that crosstalk exists between glucosinolate metabolic processes and lignin biosynthesis. Integrating this differential expression with the GWAS analysis, we identified four candidate genes regulating lignin, including glycosyl hydrolase (BnaA01g00480D), CYT1 (BnaA04g22820D), and two encoding transcription factors, SHINE1 (ERF family) and DAR6 (LIM family). This study provides insight into the genetic control of lodging and lignin in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambavaram MM, Krishnan A, Trijatmiko KR, Pereira A (2011) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol 155:916–931

    Article  CAS  PubMed  Google Scholar 

  • Barriere Y, Courtial A, Soler M, Grima-Pettenati J (2015) Toward the identification of genes underlying maize QTLs for lignin content, focusing on colocalizations with lignin biosynthetic genes and their regulatory MYB and NAC transcription factors. Mol Breed 35:87

    Article  Google Scholar 

  • Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR, Ennos AR (2004) Understanding and reducing lodging in cereals. Adv Agron 84:217–271

    Article  Google Scholar 

  • Board J (2001) Reduced lodging for soybean in low plant population is related to light quality. Crop Sci 41:379–384

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cappa EP, El-Kassaby YA, Garcia MN, Acuna C, Borralho NM, Grattapaglia D, Marcucci Poltri SN (2013) Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS One 8:e81267

    Article  PubMed  PubMed Central  Google Scholar 

  • Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T (2013) Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. J Exp Bot 64:185–197

    Article  CAS  PubMed  Google Scholar 

  • Chavigneau H, Goué N, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y (2012) QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of Arabidopsis thaliana and search for candidate genes involved in cell wall biosynthesis and degradability. OJGen 2:7–30

    Article  CAS  Google Scholar 

  • Chen HF, Shan ZH, Sha AH, Wu BD, Yang ZL, Chen SL, Zhou R, Zhou XN (2011) Quantitative trait loci analysis of stem strength and related traits in soybean. Euphytica 179:485–497

    Article  Google Scholar 

  • Chhatre VE, Emerson KJ (2017) StrAuto: automation and parallelization of Structure analysis. BMC Bioinformatics 18:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson J, Phillips M (1930) Lignin as a possible factor in lodging of cereals. Science 72:401–402

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Grondin A, Lee CR, Henry A, Olds TM, Kumar A (2015) Understanding rice adaptation to varying agro-ecosystems: trait interactions and quantitative trait loci. BMC Genet 16:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, Vonholdt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Escamilla-Trevino LL, Chen W, Card ML, Shih MC, Cheng CL, Poulton JE (2006) Arabidopsis thaliana beta-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 67:1651–1660

    Article  CAS  PubMed  Google Scholar 

  • Flintham JE, Borner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agr Sci 128:11–25

    Article  Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Yatusevich R, Berger B, Muller C, Flugge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal 51:247–261

    Article  CAS  PubMed  Google Scholar 

  • Guragain YN, Herrera AI, Vadlani PV, Prakash O (2015) Lignins of bioenergy crops: a review? Nat Prod Commun 10:201–208

    PubMed  Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Hai L, Guo HH, Xiao SH, Jiang GL, Zhang XY, Yan CS, Xin ZY, Jia JZ (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol 125:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam N, Evans EJ (1994) Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theor Appl Genet 88:530–534

    Article  CAS  PubMed  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H (2000) Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J 22:289–301

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using Q–Q and manhattan plots. bioRxiv 005165

  • Kim JI, Dolan WL, Anderson NA, Chapple C (2015) Indole glucosinolate biosynthesis limits phenylpropanoid accumulation in Arabidopsis thaliana. Plant Cell 27:1529–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto T, Chiba W, Saito K, Fukushima K, Uraki Y, Ubukata M (2010) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J Agric Food Chem 58:895–901

    Article  CAS  PubMed  Google Scholar 

  • Lex J, Ahlemeyer J, Friedt W, Ordon F (2014) Genome-wide association studies of agronomic and quality traits in a set of German winter barley (Hordeum vulgare L.) cultivars using Diversity Arrays Technology (DArT). J Appl Genet 55:295–305

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gu H, Qi C (2014b) QTL mapping for lodging resistance and its related traits by RIL population of Brassica napus L. Chin J Oil Crop Sci 36:10–17

    Google Scholar 

  • Li FC, Zhang ML, Guo K, Hu Z, Zhang R, Feng YQ, Yi XY, Zou WH, Wang LQ, Wu CY, Tian JS, Lu TG, Xie GS, Peng LC (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Wightman R, Geshi N, Turner SR, Scheller HV (2010) Arabidopsis—a powerful model system for plant cell wall research. Plant J 61:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Guan C, Xiao J, Liang Y, Lei D, Wang Y (2007) Relation between physico-chemical properties of stem and lodging and evaluation of lodging resistance in rapeseed (Brassica napus L.). J Henan Agric Sci 12:40–42

    Google Scholar 

  • Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 8:e83052

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR (2001) Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci USA 98:2262–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Miralles DJ, Slafer GA (1995) Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crop Res 43:55–66

    Article  Google Scholar 

  • Nickle TC, Meinke DW (1998) A cytokinesis-defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls, and excessive callose accumulation. Plant J 15:321–332

    Article  CAS  PubMed  Google Scholar 

  • Ohman D, Demedts B, Kumar M, Gerber L, Gorzsas A, Goeminne G, Hedenstrom M, Ellis B, Boerjan W, Sundberg B (2013) MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. Plant J 73:63–76

    Article  PubMed  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Li Y, Zhang Y, Yu C, Fu T, Zou J, Tu Y, Peng L, Chen P (2016) G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Biores Technol 203:325–333

    Article  CAS  Google Scholar 

  • Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS One 8:e67066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena MJ, Zhong RQ, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X (2012) The selection of lodging indicators and mapping QTL for lodging in Brassica napus L. Master’s thesis Southwest University, Chongqing, China

  • Qu CM, Li SM, Duan XJ, Fan JH, Jia LD, Zhao HY, Lu K, Li JN, Xu XF, Wang R (2015) Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes 6:1215–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58:706–714

    Article  CAS  PubMed  Google Scholar 

  • Rode J, Ahlemeyer J, Friedt W, Ordon F (2012) Identification of marker-trait associations in the German winter barley breeding gene pool (Hordeum vulgare L.). Mol Breed 30:831–843

    Article  Google Scholar 

  • Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system: version 2.1. Exeter Software

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping. J Integr Plant Biol 56:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012a) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W (2012b) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, Xiao YG, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) Is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Vansoest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  CAS  Google Scholar 

  • Wang J, Jian H, Wei L, Qu C, Xu X, Lu K, Qian W, Li J, Li M, Liu L (2015) Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in rapeseed (Brassica napus L.). PLoS One 10:e0145045

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532

    Article  CAS  PubMed  Google Scholar 

  • Wei LJ, Jian HJ, Lu K, Filardo F, Yin NW, Liu LZ, Qu CM, Li W, Du H, Li JN (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14:1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Xie JK, Kong XL, Chen J, Hu BL, Wen PA, Zhuang JY, Bao JS (2011) Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativaxOryza rufipogon. J Zhejiang Univ-Sc B 12:518–526

    Article  Google Scholar 

  • Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Takarada T, Yano M, Yamamoto T, Fukuoka S, Wu J, Ando T, Ordonio RL, Hirano K, Matsuoka M (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant 8:303–314

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Singh D, Gao D, Chen S (2014) Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. Biotechnol Biofuels 7:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong RQ, Burk DH, Morrison WH, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon RA, Davis M (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 285:38961–38968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology (2013BAD01B03-12) and the National High Technology Research and Development Plan (2016YFD0101007), 863 project (2011AA10A104 and 2013AA102602), the National Natural Science Foundation of China (31171619, 31371655, and 31571701 and U1302266), the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-13), the “111″ Project (B12006), and the postdoctoral programme (BX201700201). Thanks to the China Scholarship Council (CSC) for its support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew H. Paterson or Jiana Li.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest in the authorship and publication of this document.

Additional information

Communicated by Carlos F. Quiros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Jian, H., Lu, K. et al. Genetic and transcriptomic analyses of lignin- and lodging-related traits in Brassica napus . Theor Appl Genet 130, 1961–1973 (2017). https://doi.org/10.1007/s00122-017-2937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2937-x

Navigation