Skip to main content
Log in

Overcoming self-incompatibility in grasses: a pathway to hybrid breeding

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Allogamous grasses exhibit an effective two-locus gametophytic self-incompatibility (SI) system, limiting the range of breeding techniques applicable for cultivar development. Current breeding methods based on populations are characterized by comparably low genetic gains for important traits such as biomass yield. To implement more efficient breeding schemes, the overall understanding of the SI system is crucial as are the mechanisms involved in the breakdown of SI. Self-fertile variants in outcrossing grasses have been studied, and the current level of knowledge includes approximate gene locations, linked molecular markers and first hypotheses on their mode of action. Environmental conditions increasing seed set upon self-pollination have also been described. Even though some strategies were proposed to take advantage of self-fertility, there have, so far, not been changes in the methods applied in cultivar development for allogamous grasses. In this review, we describe the current knowledge about self-fertility in allogamous grasses and outline strategies to incorporate this trait for implementation in synthetic and hybrid breeding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli AO (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  CAS  PubMed  Google Scholar 

  • Andersen SB (2003) Double haploid induction in ryegrass and other grasses. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants—a manual. Kluwer Academic Publishers, Dordrecht, pp 179–183

    Chapter  Google Scholar 

  • Anhalt UCM, Heslop-Harrison PJS, Byrne S, Guillard A, Barth S (2008) Segregation distortion in Lolium: evidence for genetic effects. Theor Appl Genet 117:297–306

    Article  CAS  PubMed  Google Scholar 

  • Arias Aguirre A, Studer B, Frei U, Lübberstedt T (2012) Prospects for hybrid breeding in bioenergy grasses. Bioenerg Res 5(1):10–19

    Article  Google Scholar 

  • Arias Aguirre A, Studer B, Do Canto J, Frei U, Lübberstedt T (2013) Mapping a new source of self-fertility in perennial ryegrass (Lolium perenne L.). 4 1:385–395

    Google Scholar 

  • Baumann U, Juttner J, Bian X, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot 85:203–209

    Article  CAS  Google Scholar 

  • Bean EW, Yok-Hwa C (1972) An analysis of the growth of inbred progeny of Lolium. J Agric Sci 79(147):153

    Google Scholar 

  • Beddows AR (1931) Seed setting and flowering in various grasses. Bull Welsh Pl Breed Sta Ser H 12:5–99

    Google Scholar 

  • Beddows AR, Breese EL, Lewis B (1962) The genetic assessment of heterozygous breeding material by means of a diallel cross I. Description of parents, self- and cross-fertility and early seedling vigour. Heredity 17:501–512

    Article  Google Scholar 

  • Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ, Langridge P (2004) High-resolution mapping of the S and Z loci of Phalaris coerulescens. Genome 47:918–930

    Article  CAS  PubMed  Google Scholar 

  • Boskovic RI, Sargent DJ, Tobutt KR (2010) Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. J Exp Bot 61(3):755–763

    Article  CAS  PubMed  Google Scholar 

  • Buckner RC (1960) Performance of inbred lines, polycross progenies, and synthetics of tall fescue selected for improved palatability. Agron J 52:177–180

    Article  Google Scholar 

  • Buckner RC, Fergus EN (1960) Improvement of tall fescue for palatability by selection within inbred lines. Agron J 52(3):173–176

    Article  Google Scholar 

  • Cachi AM, Wünsch A (2011) Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). J Exp Bot 62(6):1847–1856

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth DE, Kamau E, Hagenblad J, Tang C (2006) Trans-specificity at loci near the self-incompatibility loci in Arabidopsis. Genetics 172:2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor HE (1979) Breeding systems in the grasses: a survey. N Z J Bot 17:547–574

    Article  Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1980) Self-incompatibility in ryegrass IV. Seed-set in diploid Lolium perenne L. Heredity 44:333–340

    Article  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

  • De Santis G (2007) Effect of generation of inbreeding on yield and agronomic traits in tall fescue (Festuca arundinacea, Schreb.). Breeding and seed production for conventional and organic agriculture. Proceedings of the XXVI meeting of the EUCARPIA fodder crops and amenity grasses section, XVI meeting of the EUCARPIA Medicago spp group, Perugia, Italy, pp 104–107

  • Donia A, Ghada B, Hend BT, Sana BM, Amel SH (2015) Identification, evolutionary patterns and intragenic recombination of the gametophytic self incompatibility pollen gene (SBF) in Tunisian Prunus species (Rosaceae). Plant Mol Biol Rep. doi:10.1007/s11105-015-0922-6

    Google Scholar 

  • Drolsom PN, Nielsen EL (1969) Use of self-fertility in the Improvement of Bromus inermis and Phleum pretense. Crop Sci 9(6):710–713

    Article  Google Scholar 

  • Egorova IA, Peneva TI, Baranova OA, Voylokov AV (2000) Analysis of linkage between biochemical and morphological markers of rye chromosomes 1R, 2R, and 5R and mutations of self-fertility at the main incompatibility loci. Russ J Genet 36(12):1423–1430

    Article  CAS  Google Scholar 

  • Eickmeyer F (1994) Erstellung von molekularen Markern und Untersuchungen zur Hybridzuchtung mit Hilfe der genetischen Inkompatibilitat bei Weidelgras-Arten (Lolium spp.). PhD thesis, University of Hannover, Germany

  • Elgersma A, Stephenson AG, den Nijs APM (1989) Effects of genotype and temperature on pollen tube growth in perennial ryegrass (Lolium perenne L.). Sex Plant Reprod 2:225–230

    Article  Google Scholar 

  • England JFW (1974) The use of incompatibility for the production of F1 hybrids in forage grasses. Heredity 32(2):183–188

    Article  Google Scholar 

  • Fearon CH, Hayward MD, Lawrence MJ (1983) Self-incompatibility in ryegrass VI. Self seed-set and incompatibility genotype in Lolium perenne L. Heredity 50(2):169–177

    Article  Google Scholar 

  • Foster CA, Wright CE (1970) Variation in the expression of self-fertility in Lolium perenne L. Euphytica 19:61–70

    Article  Google Scholar 

  • Fuong FT, Voylokov AV, Smirnov VG (1993) Genetic studies of self-fertility in rye (Secale cereale L.). 2. The search for isozyme marker genes linked to self-incompatibility loci. Theor Appl Genet 87:619–623

    Article  CAS  PubMed  Google Scholar 

  • Geiger HH, Miedaner T (1999) Hybrid rye and heterosis. In: Coors JG (ed) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America, Madison, pp 439–450

    Google Scholar 

  • Gertz A, Wricke G (1991) Inheritance of temperature-induced pseudocompatibility in rye. Plant Breed 107:89–96

    Article  Google Scholar 

  • Gervais CE, Castric V, Ressayre A, Billiard S (2011) Origin and diversification dynamics of self-incompatibility haplotypes. Genetics 188:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810

    Article  CAS  PubMed  Google Scholar 

  • Good-Avila SV, Mena-Alí JI, Stephenson AG (2008) Genetic and environmental causes and evolutionary consequences of variations in self-fertility in self incompatible species. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 33–51

    Chapter  Google Scholar 

  • Hayman DL, Richter J (1992) Mutations affecting self-incompatibility in Phalaris coerulescens Desf. (Poaceae). Heredity 68:495–503

    Article  Google Scholar 

  • Islam MS, Studer B, Møller IM, Asp T (2014) Genetics and biology of cytoplasmic male sterility and its applications in forage and turf grass breeding. Plant Breed 133:299–312

    Article  CAS  Google Scholar 

  • Jenkin TJ (1931) Self-fertility in perennial ryegrass (Lolium perenne L.). Bull Welsh Pl Breed Stat 12:100–119

    Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lubberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  CAS  PubMed  Google Scholar 

  • Jones RN, Jenabzadeh P (1981) Variation in self-fertility, flowering time and inflorescence production in inbred Lolium perenne L. J Agric Sci 96:521–537

    Article  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Kakeda K, Ibuki T, Suzuki J, Tadano H, Kurita Y, Hanai Y, Kowyama Y (2008) Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol Genet Genom 280:509–519

    Article  CAS  Google Scholar 

  • Kalton RR, Smit AG, Leffel RC (1952) Parent-inbred progeny relationship of selected orchardgrass clones. Agron J 44:481–486

    Article  Google Scholar 

  • Kho YO, Baer J (1968) Observing pollen tubes by means of fluorescence. Euphytica 17:298–302

    Google Scholar 

  • Kindiger B (2012) Notification of the release of annual ryegrass genetic stock IL1. J Plant Regist 6:117–120

    Article  Google Scholar 

  • Kindiger B, Singh D (2011) Registration of annual ryegrass genetic stock IL2. J Plant Regist 5:254–256

    Article  Google Scholar 

  • Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Laidig F, Piepho HP, Drobek T, Meyer U (2014) Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor Appl Genet 127:2599–2617

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalouette JA (1967) Growth of grass pollen when exhibited by the callose fluorochrome reaction. Grana Palynol 7:601–603

    Article  Google Scholar 

  • Lee JM, Matthew C, Thom ER, Chapman DF (2012) Perennial ryegrass breeding in New Zealand: a dairy industry perspective. Crop Pasture Sci 63:107–127

    Article  Google Scholar 

  • Li X, Paech N, Nield J, Hayman D, Langridge P (1997) Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Mol Biol 34:223–232

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Thames SL, Wu Y (2014) Lowland switchgrass plants in populations set completely outcrossed seeds under field conditions as assessed with SSR markers. Bioenerg Res 7(1):253–259

    Article  Google Scholar 

  • Lundqvist A (1958) Self-incompatibility in rye IV. Factors related to self-seeding. Hereditas 44:193–256

    Article  Google Scholar 

  • Lundqvist A (1960) The origin of self-compatibility in rye. Hereditas 46:1–19

    Google Scholar 

  • Lundqvist A (1961a) Self-incompatibility in Festuca pratensis Huds. Hereditas 47(3–4):542–562

    Google Scholar 

  • Lundqvist A (1961b) A rapid method for the analysis of incompatibility in grasses. Hereditas 47:705–707

    Article  Google Scholar 

  • Lundqvist A (1964) The nature of the two-loci incompatibility system in grasses. IV. Interaction between the loci in relation to pseudo-compatibility in Festuca pratensis Huds. Hereditas 52(2):221–234

    Article  Google Scholar 

  • Lundqvist A (1968) The mode of origin of self-fertility in grasses. Hereditas 59:413–426

    Article  Google Scholar 

  • Madsen S, Olesen A, Andersen SB (1993) Self-fertile doubled haploid plants of perennial ryegrass (Lolium perenne L.). Plant Breed 110:323–327

    Article  Google Scholar 

  • Manzanares C (2013) Genetics of self-incompatibility in perennial ryegrass (Lolium perenne L.). PhD thesis, The University of Birmingham, UK

  • Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2015) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol. doi:10.1093/molbev/msv335

    PubMed  Google Scholar 

  • Martínez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  • Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matton DP, Luu DT, Xike Q, Laublin G, O’Brien M, Maes O, Morse D, Cappadocia M (1999) Production of an S-RNase with dual specificity suggests a novel hypothesis for the generation of new alleles. Plant Cell 11:2087–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonagh J, McEvoy M, O’Donovan M, Gilliland TJ (2014) Genetic gain in yield of perennial ryegrass (Lolium perenne), Italian ryegrass (Lolium multiflorum Lam.) and hybrid ryegrass (Lolium × boucheanum Kunth) cultivars in Northern Ireland Recommended List 1972–2013. In: EGF at 50: The future of European grasslands. Proceedings of the 25th general meeting of the European Grassland Federation, Aberystwyth, Wales, 7–11 September 2014, pp 836–839

  • McKone MJ (1985) Reproductive biology of several bromegrasses (Bromus): breeding system, pattern of fruit maturation, and seed set. Am J Bot 72(9):1334–1339

    Article  Google Scholar 

  • Melz G, Melz G, Winkel A (1987) Genetical analysis of rye (Secale cereale L.) III. Self-fertility of the rye mutant vd—inheritance and gene location. Genet Pol 28(1–2):1–9

    Google Scholar 

  • Melz G, Kaczmarek J, Szigat G (1990) Genetical analysis of rye (Secale cereale L.). Location of self-fertility genes in different inbred lines. Genet Pol 31(1):1–7

    Google Scholar 

  • Murray B (1974) Breeding systems and floral biology in the genus Briza. Heredity 33(2):285–292

    Article  Google Scholar 

  • O’connor JR, Lyons TB, Jahufer MZZ, Faville M, Barrett BA (2015) Identifying potential heterosis in perennial ryegrass. J N Z Grassl 77:227–232

    Google Scholar 

  • Ortega E, Bonskovic RI, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Gen Genom 276:413–426

    Article  CAS  Google Scholar 

  • Pembleton LW, Shinozuka H, Wang J, Spangenberg GC, Forster JW, Cogan NOI (2015) Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles. Front Plant Sci 6:764. doi:10.3389/fpls.2015.00764

    Article  PubMed  PubMed Central  Google Scholar 

  • Posselt UK (1993) Hybrid production in Lolium perenne based on incompatibility. Euphytica 71:29–33

    Article  Google Scholar 

  • Posselt UK (2003) Heterosis in grasses. Czech J Genet Plant Breed 39(Special Issue):48–53

    Google Scholar 

  • Posselt UK (2010) Breeding methods in cross-pollinated species. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, handbook of plant breeding. Springer, New York, pp 39–87

    Chapter  Google Scholar 

  • Robins JG, Bushman BS, Escribano S, Jensen KB (2015) Heterosis for protein, digestibility, fiber, and water soluble carbohydrates in nine sources of orchardgrass germplasm. Euphytica 204:503–511

    Article  CAS  Google Scholar 

  • Saba-El-Leil MK, Rivard S, Morse D, Cappadocia M (1994) The S11 and S13 self incompatibility alleles in Solanum chacoense Bitt. are remarkably similar. Plant Mol Biol 24:571–583

    Article  CAS  PubMed  Google Scholar 

  • Sapir G, Stern RA, Goldway M, Shafir S (2007) SFBs of Japanese Plum (Prunus salicina): cloning seven alleles and determining their linkage to the S-RNase gene. Hortscience 42(7):1509–1512

    CAS  Google Scholar 

  • Sato H, Yoshida K, Mitsuda N, Ohme-Takagi M, Takamizo T (2012) Male-sterile and cleistogamous phenotypes in tall fescue induced by chimeric repressors of SUPERWOMAN1 and OsMADS58. Plant Sci 183:183–189

    Article  CAS  PubMed  Google Scholar 

  • Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB (2007) S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 19:94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72:343–355

    Article  CAS  PubMed  Google Scholar 

  • Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Holland RF (1954) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron J 46(1):20–23

    Article  Google Scholar 

  • Sykes T, Yates S, Nagy I, Asp T, Small I, Studer B (2016) In silico identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biol. doi:10.1093/gbe/evw047

    Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi N, Brewer PB, Newbigin E, Uyenoyama MK (2003) Patterns of variation within self-incompatibility loci. Mol Biol Evol 20(11):1778–1794

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Fujimoto R, Sugimura T, Sato K, Okamoto S, Zhang S, Nishio T (2007) Effects of recombination on hitchhiking diversity in the Brassica self-incompatibility locus complex. Genetics 177:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175–181

    Article  Google Scholar 

  • Thorogood D, Hayward MD (1992) Self-compatibility in Lolium temulentum L: its genetic control and transfer into L. perenne L. and L. multiflorum Lam. Heredity 68:71–78

    Article  Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  CAS  PubMed  Google Scholar 

  • Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363

    Article  CAS  PubMed  Google Scholar 

  • Uyenoyama MK, Zhang Y, Newbigin E (2001) On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157:1805–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Santen E, Casler MD (1987) Effects of inbreeding and genetic variation on forage quality traits and dry matter yield in Dactylis glomerata L. subspecies. Plant Breed 98:243–248

    Article  Google Scholar 

  • Vieira CP, Charlesworth D, Vieira J (2003) Evidence for rare recombination at the gametophytic self-incompatibility locus. Heredity 91:262–267

    Article  CAS  PubMed  Google Scholar 

  • Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006) Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164

    Article  Google Scholar 

  • Vogel KP, Pedersen JF (1993) Breeding systems for cross-pollinated perennial grasses. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford, pp 251–274

    Google Scholar 

  • Voylokov AV (2007) Prospects of using self-fertility in breeding rye populations varieties. Russ J Genet 43(10):1173–1180

    Article  CAS  Google Scholar 

  • Voylokov AV, Fuong FT, Smirnov VG (1993) Genetic studies of self-fertility in rye (Secale cereale L.). 1. The identification of genotypes of self-fertile lines for the Sf alleles of self-incompatibility genes. Theor Appl Genet 87:616–618

    Article  CAS  PubMed  Google Scholar 

  • Voylokov AV, Korzun V, Börner A (1997) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147–153

    Article  Google Scholar 

  • Wang X, Hughes AL, Tsukamoto T, Ando T, Kao T (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang X, McCubbin AG, Kao T (2003) Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata. Plant Mol Biol 53:565–580

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tsukamoto T, Yi K, Wang X, Huang S, McCubbin AG, Kao T (2004) Chromosome walking in the Petunia inflata self-incompatibility (S-) locus and gene identification in an 881 kb contig containing S2-RNase. Plant Mol Biol 54:727–742

    Article  CAS  PubMed  Google Scholar 

  • Wehling P, Hackauf B, Wricke G (1994) Phosphorylation of pollen proteins in relation to self-incompatibility in rye (Secale cereale L.). Sex Plant Reprod 7:67–75

    Article  Google Scholar 

  • Wehling P, Hackauf B, Wricke G (1995) Characterization of the two-factor self-incompatibility system in Secale cereale L. Adv Plant Breed 18:149–161

    Google Scholar 

  • Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agr Sci 140:129–150

    Article  CAS  Google Scholar 

  • Wilkins PW, Thorogood D (1992) Breakdown of self-incompatibility in perennial ryegrass at high temperature and its uses in breeding. Euphytica 64:65–69

    Google Scholar 

  • Woodfield DR (1999) Genetic improvements in New Zealand forage cultivars. In: Proceedings of the conference-New Zealand grassland association 63:3–7

  • Wricke G (1969) Untersuchungen zur Vererbung der Selbstfertilität beim Roggen (Secale cereale). Theor Appl Genet 39:371–378

    Article  CAS  PubMed  Google Scholar 

  • Wricke G (1976) Comparison of selection based on yield of half sib progenies and of I1 lines per se in rye (Secale cereale L.). Theor Appl Genet 47:265–269

    Article  CAS  PubMed  Google Scholar 

  • Wünsch A, Hormaza JI (2004) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17:203–210

    Article  CAS  Google Scholar 

  • Wünsch A, Tao R, Hormaza JI (2010) Self-compatibility in ‘Cristobalina’ sweet cherry is not associated with duplications or modified transcription levels of S-locus genes. Plant Cell Rep 29:715–721

    Article  PubMed  CAS  Google Scholar 

  • Yamada T (2001) Introduction of a self-compatible gene of Lolium temulentum L. to perennial ryegrass (Lolium perenne L.) for the purpose of the production of inbred lines of perennial ryegrass. Euphytica 122:213–217

    Article  Google Scholar 

  • Yang B, Thorogood D, Armstead I, Barth S (2008) How far are we from unravelling self-incompatibility in grasses? New Phytol 179:740–753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank USDA’s National Institute of Food and Agriculture (Project Numbers: IOW04314, IOW01018), as well as the RF Baker Center for Plant Breeding and K.J. Frey Chair in Agronomy at Iowa State University for funding this work and also, the National Agency of Research and Innovation (ANII) of Uruguay for contributing with funds to JD’s doctorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Do Canto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. K. Varshney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do Canto, J., Studer, B. & Lubberstedt, T. Overcoming self-incompatibility in grasses: a pathway to hybrid breeding. Theor Appl Genet 129, 1815–1829 (2016). https://doi.org/10.1007/s00122-016-2775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2775-2

Keywords

Navigation