Skip to main content

Advertisement

Log in

Genomic selection in a commercial winter wheat population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genomic selection models can be trained using historical data and filtering genotypes based on phenotyping intensity and reliability criterion are able to increase the prediction ability.

Abstract

We implemented genomic selection based on a large commercial population incorporating 2325 European winter wheat lines. Our objectives were (1) to study whether modeling epistasis besides additive genetic effects results in enhancement on prediction ability of genomic selection, (2) to assess prediction ability when training population comprised historical or less-intensively phenotyped lines, and (3) to explore the prediction ability in subpopulations selected based on the reliability criterion. We found a 5 % increase in prediction ability when shifting from additive to additive plus epistatic effects models. In addition, only a marginal loss from 0.65 to 0.50 in accuracy was observed using the data collected from 1 year to predict genotypes of the following year, revealing that stable genomic selection models can be accurately calibrated to predict subsequent breeding stages. Moreover, prediction ability was maximized when the genotypes evaluated in a single location were excluded from the training set but subsequently decreased again when the phenotyping intensity was increased above two locations, suggesting that the update of the training population should be performed considering all the selected genotypes but excluding those evaluated in a single location. The genomic prediction ability was substantially higher in subpopulations selected based on the reliability criterion, indicating that phenotypic selection for highly reliable individuals could be directly replaced by applying genomic selection to them. We empirically conclude that there is a high potential to assist commercial wheat breeding programs employing genomic selection approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akdemir D, Sanchez JI, Jannink J-L (2015) Optimization of genomic selection training populations with a genetic algorithm. Genet Sel Evol 47:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J-L (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144

    Article  Google Scholar 

  • Boligon A, Long N, Albuquerque LGd, Weigel K, Gianola D, Rosa G (2012) Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection. J Anim Sci 90:4716–4722

    Article  CAS  PubMed  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Cai X, Huang A, Xu S (2011) Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinform 12:211

    Article  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson JC, Endelman JB, Heslot N, Crossa J, Poland J, Dreisigacker S, Manès Y, Sorrells ME, Jannink J-L (2013) The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res 154:12–22

    Article  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308

    Article  Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics. DS Falconer

  • Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 41

  • Gianola D, van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed Central  PubMed  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilmour AR, Gogel B, Cullis B, Thompson R, Butler D (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK

  • Goldringer I, Brabant P, Gallais A (1997) Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity 79:60–71

    Article  Google Scholar 

  • González-Camacho J, de Los Campos G, Pérez P, Gianola D, Cairns J, Mahuku G, Babu R, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771

    Article  PubMed Central  PubMed  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127:749–762

    Article  PubMed  Google Scholar 

  • Habier D, Fernando R, Dekkers J (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinform 12:186

    Article  Google Scholar 

  • Hayes B, Bowman P, Chamberlain A, Goddard M (2009a) Invited review: genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Hayes B, Bowman P, Chamberlain A, Verbyla K, Goddard M (2009b) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution 41:51

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41

    Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics: 423–447

  • Henderson CR (1985) Best linear unbiased prediction of nonadditive genetic merits. J Anim Sci 60:111–117

    Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed Central  PubMed  Google Scholar 

  • Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201:759–768

    Article  PubMed  Google Scholar 

  • Jiménez-Montero J, Gonzalez-Recio O, Alenda R (2012) Genotyping strategies for genomic selection in small dairy cattle populations. Animal 6:1216–1224

    Article  PubMed  Google Scholar 

  • Liu Z, Seefried FR, Reinhardt F, Rensing S, Thaller G, Reents R (2011) Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction. Genet Sel Evol 43

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink J-L, Singh RP, Autrique E, de los Campos G (2015) Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3: Genes| Genomes| Genetics:g3. 114.016097

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet. doi:10.1007/s00122-015-2602-1

    PubMed  Google Scholar 

  • Möhring J, Piepho H-P (2009) Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci 49:1977–1988

    Article  Google Scholar 

  • Morota G, Gianola D (2014) Kernel-based whole-genome prediction of complex traits: a review. Front genet 5:363

    PubMed Central  PubMed  Google Scholar 

  • Ostersen T, Christensen OF, Henryon M, Nielsen B, Su G, Madsen P (2011) Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genet Sel Evol 43:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    Article  PubMed Central  PubMed  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat commun 6:5989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize in breds (Zea mays L.). Genetics 192:715–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud genet 7:145–153

    Google Scholar 

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells ME (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

    Article  CAS  Google Scholar 

  • Rutkoski J, Singh R, Huerta-Espino J, Bhavani S, Poland J, Jannink J, Sorrells M (2015) Efficient use of historical data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome. doi:10.3835/plantgenome2014.09.0046

    Google Scholar 

  • Sallam A, Endelman J, Jannink J-L, Smith K (2015) Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant Genome. doi:10.3835/plantgenome2014.05.0020

    Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Piepho H-P (2013) Comparisons of single-stage and two-stage approaches to genomic selection. Theor Appl Genet 126:69–82

    Article  PubMed  Google Scholar 

  • Utz H, Laidig F (1989) Genetic and environmental variability of yields in the official FRG variety performance tests. Biul Oceny Odmian:21–22

  • VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • VanRaden P, Van Tassell C, Wiggans G, Sonstegard T, Schnabel R, Taylor J, Schenkel F (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    Article  CAS  PubMed  Google Scholar 

  • Wang D, El-Basyoni IS, Baenziger PS, Crossa J, Eskridge K, Dweikat I (2012) Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity 109:313–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber K, Thallman R, Keele J, Snelling W, Bennett G, Smith T, McDaneld T, Allan M, Van Eenennaam A, Kuehn L (2012) Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes. J Anim Sci 90:4177–4190

    Article  CAS  PubMed  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3: genes| Genomes|. Genetics 2:1427–1436

    Google Scholar 

  • Wittenburg D, Melzer N, Reinsch N (2011) Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers. BMC Genet 12:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Longin FH, Würschum T, Ranc N, Reif JC (2012) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 125:707–713

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Dekkers JC, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Reif.

Ethics declarations

Conflict of interest

All authors agree that there are not conflicts of interest to be reported.

Additional information

Communicated by H. Iwata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2655_MOESM1_ESM.jpg

Supplementary Fig. S1. Principal coordinate analysis based on pairwise Rogers’ distances among the 2,325 winter wheat inbred lines. Percentages in brackets indicate the variance contribution of corresponding principal coordinates. (JPEG 6220 kb)

122_2015_2655_MOESM2_ESM.jpg

Supplementary Fig. S2. Distribution of the Rogers’ distances among all pairs of the 2,325 wheat inbred lines. (JPEG 1141 kb)

122_2015_2655_MOESM3_ESM.jpg

Supplementary Fig. S3. Trace plots of residual variance of genomic models based on Bayesian approach (EGBLUP, RKHS and BayesCπ). (JPEG 5045 kb)

122_2015_2655_MOESM4_ESM.jpg

Supplementary Fig. S4. Relationship between the selection accuracy (square root of the broad-sense heritability, h) for grain yield and the number of environments evaluated (combining 2012 and 2013 years data).(JPEG 874 kb)

122_2015_2655_MOESM5_ESM.jpg

Supplementary Fig. S5. Distribution of Best Linear Unbiased Estimates (BLUEs Mg ha−1) of the 2,325 wheat lines evaluated for grain yield as well as linear regression of grain yield on the average number of test environments.(JPEG 1142 kb)

Supplementary Table S1. Evaluation of grain yield in different environments (location times year) (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Schulthess, A.W., Mirdita, V. et al. Genomic selection in a commercial winter wheat population. Theor Appl Genet 129, 641–651 (2016). https://doi.org/10.1007/s00122-015-2655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2655-1

Keywords

Navigation