Skip to main content
Log in

Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F2 population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109:630–639

    Article  PubMed  CAS  Google Scholar 

  • Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breeding 21:49–65

    Article  CAS  Google Scholar 

  • Bai XF, Luo LJ, Yan WH, Kovi MR, Zhan W, Xing YZ (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11:16

    Article  PubMed  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Govindaraj P, Arumugachamy S, Aheswaram M (2005) Bulked segregant analysis to detect main QTL associated with grain quality parameters in Basmati370/ASD 16 cross in rice (Oryza sativa L.). Euphytica 144:61–68

    Article  CAS  Google Scholar 

  • Juliano BO, Villareal CP (1993) Grain quality evaluation of world rice. International Rice Research Institute, Manila

    Google Scholar 

  • Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol 51:1315–1329

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133:4305–4314

    Google Scholar 

  • Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR (2004) QTL detection for rice grain quality traits using an interspecific back-cross population derived from cultivated Asian (O. sativa L.) and African (O.glaberrima S.) rice. Genome 47:697–704

    Article  PubMed  CAS  Google Scholar 

  • Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report, 2nd edn. Whitehead Institute, Cambridge, Mass

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo YK, Zhu ZW, Chen NG, Dunan BW, Zhang LP (2004) Grain types and related quality characteristics of rice in China. Chinese J Rice Sci 18:135–139

    Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  PubMed  CAS  Google Scholar 

  • Mao HL, Sun SY, Yao JL, Wang CR, Yu SB, Xu CG, Li XH, Zhang QF (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107:19579–19584

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Oaran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked analysis: a rapid method to detect markers in specific genomic region by using segregating population. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucl Acid Res 8:4321

    Article  CAS  Google Scholar 

  • Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M (2012) SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158:1208–1219

    Article  PubMed  CAS  Google Scholar 

  • Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ (2009) Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali AJ (2004) Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR marker. Euphytica 137:325–332

    Article  CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scorr RJ (2006) The AUXIN RESPONSE FACTOR2 gene for Arabidopsis links auxin signaling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  PubMed  CAS  Google Scholar 

  • Shao GN, Tang SQ, Luo J, Wei XJ, Tang A, Wu JL, Zhuang JY, Hu PS (2010) Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics 37:523–531

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yield during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • StatSoft (1999) Statistica. StatSoft Incorporated, Tusla

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grain in Shanyou 63, an elite rice hybrid. Theor Appl Gent 101:823–829

    Article  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zhou GL, Cui KH, Li ZK, Yu SB (2012) Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breeding 29:99–113

    Article  CAS  Google Scholar 

  • Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Mu JX, Zhao SJ, Zhou HJ, Tan YB, Xu CG, Luo L, Zhang Q (2005) Development and selection of introgression lines with the identical genetic background of varieties Zhenshan 97 and 9311. Mol Plant Breeding 3:629–636 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324

    Article  PubMed  CAS  Google Scholar 

  • Zhu KM, Tang D, Yan CJ, Chi ZC, Yu HX, Chen JM, Liang JS, Gu MH, Cheng ZK (2010) EREECT PANICLE2 encodes a novel protein that regulates panicle erectness in Indica rice. Genetics 184:343–350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Program on Key Basic Research Project, National Special Program for Research of Transgenic Plant of China, and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibin Yu.

Additional information

Communicated by T. Tai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, X., Gong, R., Tan, Y. et al. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theor Appl Genet 125, 1717–1726 (2012). https://doi.org/10.1007/s00122-012-1948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1948-x

Keywords

Navigation