Skip to main content
Log in

Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (AbAb) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B (2010) Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J 64:433–445

    Article  PubMed  CAS  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics. 138:963–971

    PubMed  CAS  Google Scholar 

  • Dhaliwal HS, Singh H, Singh KS, Randhawa HS (1993) Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, London, pp 123–140

    Google Scholar 

  • Duan X, Sheng B, Zhou Y, Xiang Q (1998) Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophylac Sin 25:31–36

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:98–109

    Article  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996) Identification and high density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 114:1883–1891

    Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586

    Article  Google Scholar 

  • Ji XL, Xie CJ, Ni ZF, Yang TM, Nevo E, Fahima T, Liu ZY, Sun QX (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S, Gupta VS (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  PubMed  CAS  Google Scholar 

  • Limpert E (1987) Frequencies of virulence and fungicide resistance in the European barley mildew population in 1985. J Phytopathol 119:298–311

    Article  Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Lorieux M (2007) MapDisto: a free user-friendly program for computing genetic maps. http://mapdisto.free.fr/

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: KOMUGI–integrated wheat science database at http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2010) Catalogue of gene symbols for wheat. In: KOMUGI–integrated wheat science database at http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • Miranda LM, Perugini L, Srnic G, Brown-Guedira G, Marshall D, Leath S, Murphy JP (2007) Genetic mapping of a Triticum monococcum derived powdery mildew resistance gene in common wheat. Crop Sci 47:2323–2329

    Article  CAS  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  PubMed  CAS  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berge`s H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Qiu YC, Zhang SS (2004) Researches on powdery mildew resistant genes and their molecular markers in wheat. J Triticeae Crops 24:127–132

    Google Scholar 

  • Sears ER, Briggle LW (1969) Mapping the gene Pm1 for resistance to Erysiphe graminis f.p. tritici on chromosome 7A of wheat. Crop Sci 9:96–97

    Article  Google Scholar 

  • Singh K, Chhuneja P, Ghai M, Kaur S, Goel RK, Bains NS, Keller B, Dhaliwal HS (2007a) Molecular mapping of leaf and stripe rust resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In: Buck H, Nisi JE, Solomon N (eds) Wheat production in stressed environments. Springer, Netherlands, pp 779–786

    Chapter  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007b) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum X T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Srnic G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45:1578–1586

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4 Software for calculation of genetic linkage map in experimental populations. Kyazma B. V, Wageningen, Netherlands

    Google Scholar 

  • Wang J, Li H, Zhang L, Li C, Meng L (2011) QTL IciMapping v3.1. Webpage: http://www.isbreeding.net

  • Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98

    Article  PubMed  CAS  Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114:351–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under Indo-Swiss collaboration in Biotechnology. The financial support provided by the Department of Biotechnology, Ministry of Science and Technology, Government of India and Swiss Agency for Development and Cooperation (to KS and BK) and the Swiss National Science Foundation (to BK) is gratefully acknowledged. The powdery mildew isolates used in the study were multiplied by Gabriele Büsing. Help received by the first author from Ms Gabriele Büsing, Mr. Gerhard Herren, Dr. Susanne Brunner and Dr. Thomas Wicker University of Zurich is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh.

Additional information

Communicated by P. Langridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhuneja, P., Kumar, K., Stirnweis, D. et al. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.. Theor Appl Genet 124, 1051–1058 (2012). https://doi.org/10.1007/s00122-011-1768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1768-4

Keywords

Navigation