Skip to main content
Log in

A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We developed two mutant populations of oilseed rape (Brassica napus L.) using EMS (ethylmethanesulfonate) as a mutagen. The populations were derived from the spring type line YN01-429 and the winter type cultivar Express 617 encompassing 5,361 and 3,488 M2 plants, respectively. A high-throughput screening protocol was established based on a two-dimensional 8× pooling strategy. Genes of the sinapine biosynthesis pathway were chosen for determining the mutation frequencies and for creating novel genetic variation for rapeseed breeding. The extraction meal of oilseed rape is a rich protein source containing about 40% protein. Its use as an animal feed or human food, however, is limited by antinutritive compounds like sinapine. The targeting-induced local lesions in genomes (TILLING) strategy was applied to identify mutations of major genes of the sinapine biosynthesis pathway. We constructed locus-specific primers for several TILLING amplicons of two sinapine synthesis genes, BnaX.SGT and BnaX.REF1, covering 80–90% of the coding sequences. Screening of both populations revealed 229 and 341 mutations within the BnaX.SGT sequences (135 missense and 13 nonsense mutations) and the BnaX.REF1 sequences (162 missense, 3 nonsense, 8 splice site mutations), respectively. These mutants provide a new resource for breeding low-sinapine oilseed rape. The frequencies of missense and nonsense mutations corresponded to the frequencies of the target codons. Mutation frequencies ranged from 1/12 to 1/22 kb for the Express 617 population and from 1/27 to 1/60 kb for the YN01-429 population. Our TILLING resource is publicly available. Due to the high mutation frequencies in combination with an 8× pooling strategy, mutants can be routinely identified in a cost-efficient manner. However, primers have to be carefully designed to amplify single sequences from the polyploid rapeseed genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

CODDLE:

Codons optimized to discover deleterious lesions

EMS:

Ethylmethane sulfonate

IRD label:

Infrared detection label

PCR:

Polymerase chain reaction

REF1:

Reduction of epidermal fluorescence1

SGT:

UDP-glucose:sinapic acid glucosyltransferase

TILLING:

Targeting-induced local lesions in genomes

References

  • Allender C, King G (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed  Google Scholar 

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal: a review. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Bhinu VS, Li R, Huang J, Kaminskyj S, Sharpe A, Hannoufa A (2009) Perturbation of lignin biosynthesis pathway in Brassica napus (canola) plants using RNAi. Can J Plant Sci 89:441–453

    Article  CAS  Google Scholar 

  • Brown JWS, Simpson CG, Thow G, Clark GP, Jennings SN, Medina-Escobar N, Haupt S, Chapman SC, Oparka KJ (2002) Splicing signals and factors in plant intron removal. Biochem Soc Trans 30:146–149

    Article  PubMed  CAS  Google Scholar 

  • Chawade A, Sikora P, Brautigam M, Larsson M, Vivekanand V, Nakash MA, Chen TS, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes. BMC Plant Biol 10:86

    Article  PubMed  Google Scholar 

  • Gady ALF, Hermans FWK, Van de Wal MHBJ, van Loo EN, Visser RGF, Bachem CWB (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5:13

    Article  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Grisvard J, Keryer E, Takvorian A, Dever LV, Lea PJ, Vidal J (1998) A splice site mutation gives rise to a mutant of the C-4 plant Amaranthus edulis deficient in phosphoenolpyruvate carboxylase activity. Gene 213:31–35

    Article  PubMed  CAS  Google Scholar 

  • Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn GW (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor Appl Genet 118:953–961

    Article  PubMed  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5:41–49

    PubMed  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 3:1–14

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Minoia S, Petrozza A, D’ Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69

    Article  PubMed  Google Scholar 

  • Mittasch J, Mikolajewski S, Breuer F, Strack D, Milkowski C (2010) Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus). Theor Appl Genet 120:1485–1500

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Joy RWI, Kurylo E, Shi X, Schnaider J, Datla RSS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Rigola D, van Oeveren J, Janssen A, Bonne A, Schneiders H, van der Poel HJA, van Orsouw NJ, Hogers RCJ, de Both MTJ, van Eijk MJT (2009) High-throughput detection of induced mutations and natural variation using keypoint (TM) technology. PLoS ONE 4:e4761

    Article  PubMed  Google Scholar 

  • Röbbelen G (1967) Chemisch induzierte Mutationen. Fortschritte der Botanik 29:195–198

    Google Scholar 

  • Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res 134:113–142

    PubMed  CAS  Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed—chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Simpson CG, Thow G, Clark GP, Jennings SN, Watters JA, Brown JWS (2002) Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon. RNA A Publ RNA Soc 8:47–56

    Article  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62

    Article  PubMed  Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223

    Article  PubMed  CAS  Google Scholar 

  • Thurling N, Depittayanan V (1992) EMS induction of early flowering mutants in spring rape (Brassica napus). Plant Breed 108:177–184

    Article  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  CAS  Google Scholar 

  • Trick M, Kwon SJ, Choi SR, Fraser F, Soumpourou E, Drou N, Wang Z, Lee SY, Yang TJ, Mun JH, Paterson AH, Town CD, Pires JC, Pyo LY, Park BS, Bancroft I (2009) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539

    Article  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    Article  PubMed  CAS  Google Scholar 

  • Weier D, Mittasch J, Strack D, Milkowski C (2008) The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385

    Article  PubMed  CAS  Google Scholar 

  • Weil CF, Monde RA (2007) Getting the point—mutations in maize. Crop Sci 47:S60–S67

    Article  Google Scholar 

  • Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 71:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33:2806–2812

    Article  PubMed  CAS  Google Scholar 

  • zum Felde T, Becker HC, Möllers C (2006) Genotype × environment interactions, heritability and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199

    Article  CAS  Google Scholar 

  • zum Felde T, Baumert A, Strack D, Becker HC, Möllers C (2007) Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 126:291–296

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gislind Bräcker, Meike Pfeiler, Anja Henning, Ingrid Otschik for technical assistance and Monika Bruisch for excellent support in the greenhouse. This project was funded by the seed companies Norddeutsche Pflanzenzucht Hans-Georg Lembke KG (Hohenlieth, Germany), Deutsche Saatveredelung AG (Lippstadt, Germany) and KWS SAAT AG (Einbeck, Germany), and the German Federal Ministry for Education, Research and Technology BMBF (GABI Future grant no. 0315052C). We especially thank Dr. G. Rakow (AAFC, Canada) for providing the spring rapeseed genotype YN01-429, Dr. Frank Breuer (KWS SAAT AG) and Dr. Zeljko Micic (Deutsche Saatveredelung AG) for Express 617 M2 and M3 seed propagation and M2 leaf sampling. We thank the Zentrum für Molekulare Biowissenschaften (ZBM), University of Kiel for providing the facilities for DNA isolation and normalization and especially Prof. Dr. Axel Scheidig for CEL1 preparation. We thank Prof. Dr. Wolfgang Bilger and Jens Hermann from the Institute of Botany, University Kiel for performing additional HPLC analyses. We are also grateful to the Institute for Clinical Molecular Biology, University Kiel for considerable Sanger sequencing and especially Prof. Dr. Philip Rosenstiel for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jung.

Additional information

Communicated by R. Visser.

Hans-Joachim Harloff and Susanne Lemcke have equally contributed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harloff, HJ., Lemcke, S., Mittasch, J. et al. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124, 957–969 (2012). https://doi.org/10.1007/s00122-011-1760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1760-z

Keywords

Navigation