Skip to main content
Log in

Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To ensure food security in Africa and Asia, developing sorghum varieties with grain quality that matches consumer demand is a major breeding objective that requires a better understanding of the genetic control of grain quality traits. The objective of this targeted association study was to assess whether the polymorphism detected in six genes involved in synthesis pathways of starch (Sh2, Bt2, SssI, Ae1, and Wx) or grain storage proteins (O2) could explain the phenotypic variability of six grain quality traits [amylose content (AM), protein content (PR), lipid content (LI), hardness (HD), endosperm texture (ET), peak gelatinization temperature (PGT)], two yield component traits [thousand grain weight (TGW) and number of grains per panicle (NBG)], and yield itself (YLD). We used a core collection of 195 accessions which had been previously phenotyped and for which polymorphic sites had been identified in sequenced segments of the six genes. The associations between gene polymorphism and phenotypic traits were analyzed with Tassel. The percentages of admixture of each accession, estimated using 60 RFLP probes, were used as cofactors in the analyses, decreasing the proportion of false-positive tests (70%) due to population structure. The significant associations observed matched generally well the role of the enzymes encoded by the genes known to determine starch amount or type. Sh2, Bt2, Ae1, and Wx were associated with TGW. SssI and Ae1 were associated with PGT, a trait influenced by amylopectin amount. Sh2 was associated with AM while Wx was not, possibly because of the absence of waxy accessions in our collection. O2 and Wx were associated with HD and ET. No association was found between O2 and PR. These results were consistent with QTL or association data in sorghum and in orthologous zones of maize. This study represents the first targeted association mapping study for grain quality in sorghum and paves the way for marker-aided selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboubacar A, Hamaker BR (1999) Physicochemical properties of flours that relate to sorghum couscous quality. Cereal Chem 76:308–313

    Article  CAS  Google Scholar 

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Andersen JR, Schrag T, Melchinger AE, Zien I, Lübberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize. Theor Appl Genet 111:206–217

    Article  CAS  PubMed  Google Scholar 

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended rice pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Belton PS, Taylor JRN (2004) Sorghum and millets: protein sources for Africa. Trends Food Sci Technol 15:94–98

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfism genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  CAS  PubMed  Google Scholar 

  • Buntjer JB, Sorensen AP, Peleman JD (2005) Haplotype diversity: the link between statistical and biological association. Trends Plant Sci 10:466–471

    Article  CAS  PubMed  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  CAS  PubMed  Google Scholar 

  • Chantereau J, Trouche G, Luce C, Deu M, Hamon P (1997) Le Sorgho. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) L’amélioration des plantes tropicales. Cirad and Orstom, Montpellier, pp 565–590

    Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genetics 9:1–14

    Article  Google Scholar 

  • de Alencar Figueiredo LF, Davrieux F, Fliedel G, Rami J-F, Chantereau J, Deu M, Courtois B, Mestres C (2006) Development of NIRS equations based on a core collection to predict quality traits in sorghum grain. J Agric Food Chem 54:8501–8509

    Article  PubMed  Google Scholar 

  • de Alencar Figueiredo LF, Calatayud C, Dupuis C, Billot C, Rami JF, Brunel D, Perrier X, Courtois B, Deu M, Glaszmann J-C (2008) Phylogeographic evidence of crop neo-diversity in sorghum. Genetics 179:997–1008

    Article  PubMed  Google Scholar 

  • Deu M, Gonzàlez-de-Leòn D, Glaszmann J-C, Dégremont I, Chantereau J, Lanaud C, Hamon P (1994) RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88:838–844

    Article  CAS  Google Scholar 

  • Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180

    CAS  PubMed  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize–teosinte hybrid populations: implications for crop evolution. J Hered 85:191–195

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman, New York (512 pp)

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fliedel G (1994) Evaluation de la qualité du sorgho pour la fabrication du tô. Agriculture et développement 34:12–21

  • Fliedel G, Marti A, Thiebaut S (1996) Caractérisation et valorisation du sorgho. Cirad Montpellier, 404 pp

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 53:357–374

    Article  Google Scholar 

  • Gao H, Williamson S, Bustamante C (2007) An MCMC approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics 176:1635–1651

    Article  PubMed  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker–trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    Article  CAS  Google Scholar 

  • Goldman LL, Rocheford TR, Dudley JW (1993) Quantitative trait loci influencing protein and starch concentration in Illinois long term selection maize strains. Theor Appl Genet 87:217–224

    Article  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Tuinstra MR, Rooney WL, Kresovich S (2007) Sequence variation at candidate loci in the starch metabolism pathway in sorghum: prospects for linkage disequilibrium mapping. Plant Genome 2:125–134

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Henry AM, Damerval C (1997) High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize. Mol Gen Genet 256:147–157

    Article  CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, VanEuuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  CAS  PubMed  Google Scholar 

  • Larkin PD, McClung AM, Ayres NM, Park WD (2003) The effect of the Waxy locus (Granule Bound Starch Synthase) on pasting curve characteristics in specialty rices. Euphytica 131:243–253

    Article  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1991) Gamma-zein content is related to endosperm modification in quality protein maize. Crop Sci 31:1655–1662

    Article  CAS  Google Scholar 

  • Maddaloni M, Donini G, Balconi C, Rizzi E, Gallusci P, Forlani F, Lohmer S, Thompson R, Salamini F, Motto M (1996) The transcriptional activator Opaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms. Mol Gen Genet 250:647–654

    CAS  PubMed  Google Scholar 

  • Manicacci D, Falque M, Le Guillou S, Piegu B, Henry A-M, Le Guilloux M, Damerval C, De Vienne D (2007) Maize Sh2 gene is constrained by natural selection but escaped domestication. J Evol Biol 20:503–516

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Drenth J, Gonzalez N, Henzell RG, Jordan DR (2008) Molecular characterization of the waxy locus in sorghum. Genome 51:524–533

    Article  CAS  PubMed  Google Scholar 

  • Motto M, Hartings H, Maddaloni M, Lohmer S, Salamini F, Thompson R (1996) Genetic manipulation of protein quality in maize grains. Field Crop Res 45:37–48

    Article  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62

    Article  CAS  Google Scholar 

  • Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989–998

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  CAS  PubMed  Google Scholar 

  • Ollitrault P (1987) Evaluation génétique des sorghos cultivés (Sorghum bicolor L. Moench) par l’analyse conjointe des diversités enzymatique et morphophysiologique. Relations avec les sorghos sauvages. PhD Thesis, Université Paris XI Orsay, 187 pp

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    CAS  PubMed  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Available at http://darwin.cirad.fr/darwin

  • Pirovano L, Lanzini S, Hartings H, Lazzaroni N, Rossi V, Joshi R, Thompson RD, Salamini F, Motto M (1994) Structural and functional analysis of an Opaque-2-related gene from sorghum. Plant Mol Biol 24:515–523

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal component analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  Google Scholar 

  • Rami JF (1999) Etude des facteurs génétiques impliqués dans la qualité technologique du grain chez le maïs et le sorgho. PhD thesis, Orsay University, 96 pp

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Schultz JA, Juvik JA (2004) Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays. Plant Physiol Biochem 42:457–464

    Article  CAS  PubMed  Google Scholar 

  • Séne M, Causse M, Damerval C, Thévenot C, Prioul J-L (2000) Quantitative trait loci affecting amylose, amylopectin and starch content in maize recombinant inbred lines. Plant Physiol Biochem 38:459–472

    Article  Google Scholar 

  • Séne M, Thévenot C, Hoffmann D, Bénétrix F, Causse M, Prioul J-L (2001) QTLs for grain dry milling properties, composition and vitreousness in maize recombinant inbred lines. Theor Appl Genet 102:591–599

    Article  Google Scholar 

  • Sine B (2003) Evaluation d’une core collection de sorgho en conditions de stress hydrique pré-floral. Master University Cheikh Anta Diop, Dakar, Sénégal, 67 pp

  • Skot L, Humphreys MO, Armstead I, Heywood S, Skot KP, Sanderson R, Thomas ID, Chorlton KH, Sackville Hamilton NR (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne. Mol Breed 15:233–245

    Article  CAS  Google Scholar 

  • Thornsberry JM, Goodman MJ, Doebley J, Kresovich S, Nielsen D, Buckler ED (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA 106:21760–21765

    Article  CAS  PubMed  Google Scholar 

  • Vasemägi A, Primmer RC (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642

    Article  PubMed  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  CAS  PubMed  Google Scholar 

  • Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA, Harlan JR, Krolik H (1992) Saharan exploitation of plants 8000 years BP. Nature 359:721–724

    Article  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  CAS  PubMed  Google Scholar 

  • Yetneberk S, de Kock HL, Rooney LW, Taylor JRN (2004) Effects of sorghum cultivar on injera quality. Cereal Chem 81:314–321

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the GABI-Génoplante project “Bridging genomics and genetic diversity: associations between gene polymorphism and trait variation in cereals” for the sequencing of O2, and from the CNPq and from the Universidade Católica de Brasília through a grant to L.F. de A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Courtois.

Additional information

Communicated by J. Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Alencar Figueiredo, L.F., Sine, B., Chantereau, J. et al. Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2 . Theor Appl Genet 121, 1171–1185 (2010). https://doi.org/10.1007/s00122-010-1380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1380-z

Keywords

Navigation