Skip to main content
Log in

Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In our previous studies, one putative QTL affecting number of spikelets per panicle (SPP) was identified in the pericentromeric region of rice chromosome 7 using a recombinant inbred population. In order to define the QTL (qSPP7), RI50, a recombinant inbred line with 70% of genetic background same as the female parent of Zhenshan 97, was selected to produce near-isogenic lines for the target region in the present study. In a BC2F2 population consisting of 190 plants, the frequency distribution of SPP was shown to be discontinuous and followed the expected Mendelian ratios (1:2:1 by progeny test) for single locus segregation. qSPP7 was mapped to a 0.4 cM region between SSR marker RM3859 and RFLP marker C39 based on tests of the BC2F2 population and its progeny. Its additive and dominant effects on SPP were 51.1 and 24.9 spikelets, respectively. Of great interest, the QTL region also had effects on grain yield per plant (YD), 1,000 grain weight (GW), tillers per plant (TPP) and seed setting ratio (SR). Significant correlations were observed between SPP and YD (r = 0.66) and between SPP and SR (r = −0.29) in the progeny test. 1082 extremely small panicle plants of a BC3F2 population containing 8,400 individuals were further used to fine map the QTL. It turns out that qSPP7 co-segregated with two markers, RM5436 and RM5499 spanning a physical distance of 912.4 kb. Overall results suggested that recombination suppression occurred in the region and positional cloning strategy is infeasible for qSPP7 isolation. The higher grain yield of Minghui 63 homozygote as compared to the heterozygote suggested that Minghui 63 homozygote at qSPP7 in hybrid rice could further improve its yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin Oxidase Regulates Rice Grain Production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang QF (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Fransz P, Torres-Ruize RA (2001) The centromere 1 (CEN1) region of arabidopsis thaliana: archtecture and functional impact of chromatin. Plant J 27:285–296

    Article  PubMed  CAS  Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB Zhang Q (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Li ZK, Pinson N, Stansel M, Park WD (1995) Identification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet 91:374–381

    CAS  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza satiava L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Ashikari M, Yamanouchi U, Sasaki T, Yano M (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41

    Article  CAS  Google Scholar 

  • Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci, Hd4 and Hd5, controlling heading date in rice. Breed Sci 53:51–59

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetics maps with MAPMAKER/EXP 3.0, Ed.3. Whitehead Institute Technical Report. Whitehead Institute, Cambridge

    Google Scholar 

  • Marri PR, Sarla N, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:33

    Article  PubMed  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Murray M G, Thompson W F (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  PubMed  CAS  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Y Takazaki N Ono Y Mukai, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    Article  PubMed  CAS  Google Scholar 

  • Xing YZ, Tan YF, Xu CG, Hua JP, Tan YF (2001) Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin 43:840–845

    CAS  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Xu CG, Li XQ, Xue Y, Huang YW, Gao J, Xing YZ (2004) Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines. Theor Appl Genet 109:640–647

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interaction with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umerhara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625

    Article  PubMed  CAS  Google Scholar 

  • Zhang QF, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci 91(18):8675–8679

    Article  PubMed  CAS  Google Scholar 

  • ZhangYS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Cheng JH for helpful language improvement. This work was supported by a grant from the National Natural Science Foundation of China (30470987), and a grant from the National Key Program on Basic Research and Development of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Xing.

Additional information

Communicated by A. Paterson.

Y. Z. Xing and W. J. Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y.Z., Tang, W.J., Xue, W.Y. et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116, 789–796 (2008). https://doi.org/10.1007/s00122-008-0711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0711-9

Keywords

Navigation