Skip to main content
Log in

FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The transition from vegetative to floral meristems in higher plants is determined by the coincidence of internal and environmental signals. Contrary to the photoperiod pathway, convergent evolution of the cold-dependent pathway has implicated different genes between dicots and monocots. Whereas no association between natural variation in vernalization requirement and Flowering time locus T (FT) gene polymorphism has been described in Arabidopsis, recent studies in Triticeae suggest implication of orthologous copies of FT in the cold response. In our study, we show that nucleotide polymorphisms on A and D copies of the wheat FT gene were associated with variations for heading date in a collection of 239 lines representing diverse geographical origins and status (landraces, old or recent cultivars). Interestingly, polymorphisms in the non-coding intronic region were strongly associated to flowering variation observed on plants grown without vernalization. But differently from VRN1, no epistatic interaction between FT homeologous copies was revealed. In agreement with the results of association study, the A and D copies of FT were mapped in regions including major QTLs for earliness traits in hexaploid wheat. This work, by identifying additional homeoalleles involved in wheat vernalization pathway, will contribute to a better understanding of the control of flowering, hence providing tools for the breeding of varieties with enhanced adaptation to changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed TA, Tsujimoto H, Sasakuma T (2000) Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116:111–119

    Article  CAS  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60:481–494

    Article  PubMed  CAS  Google Scholar 

  • Ausin I, Alonso-Blanco C, Martinez-Zapater JM (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  CAS  Google Scholar 

  • Badiani K, Arthur G (1995) Evidence for receptor and G-protein regulation of a phosphatidylethanolamine-hydrolysing phospholipase A1 in guinea-pig heart microsomes: stimulation of phospholipase A1 activity by DL-isoprenaline and guanine nucleotides. Biochem J 312:805–809

    PubMed  CAS  Google Scholar 

  • Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377

    Article  CAS  Google Scholar 

  • Carmona MJ, Calonje M, Martinez-Zapater JM (2006) The FT/TFL1 gene family in grapevine. Plant Mol Biol. doi:10.1007/s11103-006-9113-z

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H (2004) Tfs1p, a member of the PEBP Family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell 3:459–470

    Article  PubMed  CAS  Google Scholar 

  • Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2005) Identification and characterization of gene sequences expressed in wheat spikelets at the heading stage. Gene 346:221–230

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    Article  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron of VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genom 273:54–65

    Article  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  PubMed  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Legouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Legouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114(3):569–584

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. PNAS 102:7748–7753

    Article  PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24(7):1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (1980) Hitchhiking: a comparison of linkage and partial selfing. Genetics 94:791–808

    PubMed  CAS  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuchel H, Hollamby G, Landridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Griffiths S, Dunford RP, Christodoulou V, Taylor SA, Cockram J, Beales J, Turner A (2004) Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Res 90:87–99

    Article  Google Scholar 

  • Law CN (1966) The location of genetic factors affecting a quantitative character in wheat. Genetics 53:487–498

    PubMed  Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptative traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics, Columbia University Press, New York

    Google Scholar 

  • Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57(11):2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G (2006a) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G (2006b) Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet 112:738–743

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Rost B, Yachdav G, Liu J (2003) The PredictProtein server. Nucleic Acids Res 32(Web Server issue):W321–W326

    Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2000) SAS/STAT User Guide, Version 8. SAS Publishing, Cary

    Google Scholar 

  • Schleiff E, Soll J (2005) Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO 6:1023–1027

    Article  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Shindo C, Tsujimoto, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion mapping system for the establishment of genetic map—physical map relationships in wheat. Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Methods Mol Biol 132:115–130

    PubMed  CAS  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28:289–301

    Article  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. PNAS 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004a) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004b) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:677–1686

    Article  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Mason C, Pollock S, Lavezzi T, Moroney J, Moore T (2004) Membrane lipid biosynthesis in Chlamydomonas reinhardtii: expression and characterization of CTP phosphoethanolamine cytidylyltransferase. Biochem J 382:51–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank C. Ridel, S. Mezi, F. Dumas, N. Galic, and M. T. Marcombes for their technical assistance. This work was supported by a French German Gabi-Génoplante project entitled “Bridging genomics and genetic diversity: associations between gene polymorphism and trait variation in cereals”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bonnin.

Additional information

Communicated by M. Morgante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 (XLS 94 kb)

Supplementary Table 1 (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnin, I., Rousset, M., Madur, D. et al. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116, 383–394 (2008). https://doi.org/10.1007/s00122-007-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0676-0

Keywords

Navigation