Skip to main content
Log in

Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phytoene synthase (Psy), a critical enzyme in the carotenoid biosynthetic pathway, demonstrated high association with the yellow pigment (YP) content in wheat grain. Characterization of Psy genes and the development of functional markers for them are of importance for marker-assisted selection in wheat breeding. In this study, the full-length genomic DNA sequence of a Psy gene (Psy-A1) located on chromosome 7A, was characterized by in silico cloning and experimental validation. The cloned Psy-A1 comprises six exons and five introns, 4,175 bp in total, and an ORF of 1,284 bp. A co-dominant marker, YP7A, was developed based on polymorphisms of two haplotypes of Psy-A1, yielding 194 and 231-bp fragments in cultivars with high and low YP content, respectively. The marker YP7A was mapped on chromosome 7AL using an RIL population from cross PH82-2/Neixing 188, and a set of Chinese Spring nullisomic–tetrasomic lines and ditelosomic line 7AS. Psy-A1, co-segregating with the STS marker YP7A, was linked to SSR marker Xwmc809 on chromosome 7AL with a genetic distance of 5.8 cM, and explained 20–28% of the phenotypic variance for YP content across three environments. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic band pattern and grain YP content. The results showed that the functional marker YP7A was closely related to grain YP content and, therefore, could be used in wheat breeding programs targeting of YP content for various wheat-based products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AACC (1995) Approved methods of the American association of cereal chemists, 9th edn. St. Paul, MN, USA

  • Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51:7825–7834

    Article  PubMed  CAS  Google Scholar 

  • Bagge M, Xia XC, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  PubMed  CAS  Google Scholar 

  • Bartley GE, Viitanen PV, Bacot KO, Scolnik PA (1992) A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem 267:5036–5039

    PubMed  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  PubMed  CAS  Google Scholar 

  • Buckner B, Miguel PS, Janick-Buckner D, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143:479–488

    PubMed  CAS  Google Scholar 

  • Clarke FR, Clarke JM, McCaig TN, Knox RE, Depauw RM (2006) Inheritance of yellow pigment concentration in seven durum wheat crosses. Can J Plant Sci 86:133–141

    Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    Article  PubMed  CAS  Google Scholar 

  • Fambrini M, Pugliesi C, Vernieri P, Giuliano G, Baroncelli S (1993) Characterization of a sunflower (Helianthus annuus L.) mutant, deficient in carotenoid synthesis and abscisic-acid content, induced by in-vitro tissue culture. Theor Appl Genet 87:65–69

    Article  CAS  Google Scholar 

  • Fedorova L, Fedorov A (2003) Introns in gene evolution. Genetica 118:123–131

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Yang J, Zhang Y, Quail K, Pena RJ (2004) Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267

    Article  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42:1695–1700

    Article  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Karvouni Z, John I, Taylor JE, Watson CF, Turner AJ, Grierson D (1995) Isolation and characterisation of a melon cDNA clone encoding phytoene synthase. Plant Mol Biol 27:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Annu Eugen 12:172–175

    Google Scholar 

  • Kruger JE, Matsuo RR, Preston K (1992) A comparison of methods for the prediction of Cantonese noodle colour. Can J Plant Sci 72:1021–1029

    Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395

    CAS  Google Scholar 

  • Lindgren LO, Stalberg KG, Hoglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Daggard G, Sutherland M, Brennan P (1999) Molecular markers for quality attributes in wheat. In: Williamson P, Banks P, Haak I, Thompson J, Campbell A (eds) Proceedings of the ninth assembly of the Wheat Breeding Society of Australia, Toowoomba, vol 1, pp 115–117

  • Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Miskelly DM (1984) Flour components affecting paste and noodle colour. J Sci Food Agric 35:463–471

    Article  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    Article  PubMed  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour color in wheat. Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Parker GD, Langridge P (2000) Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.). Mol Breed 6:169–174

    Article  CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Ray J, Moureau P, Bird C, Bird A, Grierson D, Maunders M, Truesdale M, Bramley P, Schuch W (1992) Cloning and characterization of a gene involved in phytoene synthesis from tomato. Plant Mol Biol 19:401–404

    Article  PubMed  CAS  Google Scholar 

  • Salvini M, Bernini A, Fambrini M, Pugliesi C (2005) cDNA cloning and expression of the phytoene synthase gene in sunflower. J Plant Physiol 162:479–484

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Al-Babili S, von Lintig J, Haubruck H, Rabbani S, Kleinig H, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Plant J 10:781–792

    Article  PubMed  CAS  Google Scholar 

  • Sun DJ, He ZH, Xia XC, Zhang LP, Morris CF, Appels R, Ma WJ, Wang H (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed 16:209–218

    Article  CAS  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wu YP, Zhang YL, Xiao YG, Yan J, Zhang Y, Zhang XK, Zhang LM, Xia XC, He ZH (2007) QTL mapping for important quality traits in common wheat. Sci Agric Sin (in press)

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Yan J, Xia XC, He ZH, Sutherland MW (2006) QTL mapping for kernel yellow pigment content in common wheat. Acta Agron Sin 32:41–45

    Google Scholar 

  • Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS (2007) Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Sci 47:245–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney for his critical review of this manuscript. This study was supported by the National Science Foundation of China (30771335), National Basic Research Program (2002CB11300), and National 863 Program (2006AA10Z1A7 and 2006AA100102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. He or X. C. Xia.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_660_MOESM1_ESM.doc

Alignment of the alleles Psy-A1a (EF600063) and Psy-A1b (EF600064) located on common wheat chromosome 7A. SNPs are shadowed. The introns underlined. The start and terminate codons are boxed (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X.Y., Zhang, Y.L., He, Z.H. et al. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116, 213–221 (2008). https://doi.org/10.1007/s00122-007-0660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0660-8

Keywords

Navigation