Skip to main content
Log in

Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33–45 direct and inverted repeats ≥30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    Article  PubMed  CAS  Google Scholar 

  • Bausher MG, Singh ND, Mozoru J, Lee S-B, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var. ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol (in review)

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    PubMed  Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Bowman CM, Dyer T (1986) The location and possible evolutionary significance of small dispersed repeats in wheat ctDNA. Curr Genet 10:931–941

    Article  CAS  Google Scholar 

  • Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): Multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Veeraraghavan N, Wall K, Jansen RK, Leebens-Mack J, Makalowska I, dePamphilis CW (2006) ChloroplastDB: the chloroplast genome database. Nucleic Acids Res 34:D692–D696

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee S-B (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Lee S-B, Panchal T, Wiebe PO (2001) Expression of cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Khan M, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Carmona-Sanchez O, Burns BB (2004a) Chloroplast-derived vaccine antibodies, biopharmaceuticals, and edible vaccines in transgenic plants engineered via the chloroplast genome. In: Schillberg S (ed) Molecular farming. Wiley, Germany, Chapter 8 pp 113–133

  • Daniell H, Cohill PR, Kumar S, Dufourmantel N (2004b) Chloroplast genetic engineering In: Daniell H, Chase CD (eds) molecular biology and biotechnology of plant organelles. Springer Publishers, Netherlands, pp 443–490

    Chapter  Google Scholar 

  • Daniell H, Kumar S, Duformantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23(5):238–245

    Article  PubMed  CAS  Google Scholar 

  • DeCosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 9:71–74

    Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  PubMed  CAS  Google Scholar 

  • Dhingra A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast expressed rbcS gene restores SSU levels and photosynthesis in nuclear antisense RbcS plants. Proc Natl Acad Sci USA 101:6315–6320

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garçon F, Peltier JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55(4):479–89

    Article  PubMed  CAS  Google Scholar 

  • Elnitski L, Riemer C, Petrykowska H et al (2002) PipTools: a computational toolkit to annotate and analyze pairwise comparisons of genomic sequences. Genomics 80:681–690

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Stegemann S, Bock R (2004) Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res 32:3615–3622

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  PubMed  CAS  Google Scholar 

  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: Recent advances and future perspectives. Crit Rev Plant Sci 24:83–108

    Article  CAS  Google Scholar 

  • Guda C, Lee S-B, Daniell H (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262

    Article  CAS  Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer Publishers, Dordrecht, pp 93–113

    Chapter  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Meth Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R et al (1989) The complete sequence of rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462–467

    Article  PubMed  CAS  Google Scholar 

  • Howe CJ (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10:139–145

    Article  PubMed  CAS  Google Scholar 

  • Hupfer H, Swaitek M, Hornung S et al. (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome 1 of the five distinguishable Euoenthera plastomes. Mol Gen Genet 263:581–585

    PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL et al (2005) Methods for obtaining and analyzing chloroplast genome sequences. Meth Enzym 395:348–384

    PubMed  CAS  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tompkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol (in press)

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    Article  PubMed  CAS  Google Scholar 

  • Kelchner SA (2002) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498

    Article  Google Scholar 

  • Kim K-J, Lee H-L (2004) Complete chloroplast genome sequence from Korean Ginseng (Panax schiseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Jung JD, Lee J-A et al. (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep, online

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Knox EB, Palmer JD (1998) Chloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa. Syst Bot 23:109–149

    Article  Google Scholar 

  • Kota M, Daniel H, Varma S, Garczynski SF, Gould F, William MJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    Article  PubMed  CAS  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Koichiro T, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Manipulation of gene expression facilitates plastid transformation of cotton by somatic embryogenesis and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  CAS  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  PubMed  CAS  Google Scholar 

  • Lee S-B, Kwon H-B, Kwon S-J et al. (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Lee S-B, Kaittanis C, Hostetler J, Town C, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics (in press)

  • Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58

    Article  CAS  Google Scholar 

  • Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali-and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67

    Article  CAS  Google Scholar 

  • Lossl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    PubMed  CAS  Google Scholar 

  • Maier RM, Schmitz-Linneweber (2004) Plastid genomes. In: Daniell H Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer publishers, Netherlands, pp 115–150

    Chapter  Google Scholar 

  • Maier RM, Neckermann K, lgloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  • Masood MS, Nishikawa T, Fukuoka S, Njenga PK, Tsudzuki T, Kadowaki K (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133–139

    Article  CAS  Google Scholar 

  • Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19:2084–2091

    PubMed  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui L et al. (2002) The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. The plant Cell 14:1–22

    Article  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio Technol 13:362–365

    CAS  Google Scholar 

  • Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6:355–368

    PubMed  CAS  Google Scholar 

  • Molina A, Herva-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J (2004) High yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L). Plant Sci 168:1495–1500

    Article  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T et al. (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  CAS  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Jessup JP, Hawkes JG (eds) Solanaceae IV, advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Hermann RG (ed) The molecular biology of plastids. Cell culture and somatic cell genetics of plants, vol 7A. Springer-Verlag, Vienna, pp 5–53

  • Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of Geranium chloroplast DNA—a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84:769–773

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in Legume chloroplast DNAs. Curr Genet 14:65–74

    Article  CAS  Google Scholar 

  • Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, translation. Plant Physiol 138:1746–1762

    Article  PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants-genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, pp 45–68

    Google Scholar 

  • Ruf S, Hermann M, Berger I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering. cytoplasmic male sterility via the chloroplast genome. Plant Phys 138:1232–1246

    Article  CAS  Google Scholar 

  • Ruiz ON, Hussein H, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Phys 32:1344–1352

    Article  CAS  Google Scholar 

  • Saski C, Lee S-B, Daniell HT et al. (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612

    PubMed  CAS  Google Scholar 

  • Schwartz S, Elnitski L, Li M et al. (2003) MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 31:3518–3524

    Article  PubMed  CAS  Google Scholar 

  • Scott SE, Wilkenson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17:390–392

    Article  PubMed  CAS  Google Scholar 

  • Sears BB, Stoike LL, Chiu WL (1996) Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Mol Biol Evol 13:850–863

    PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Beck JT et al. (2005) The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analyses. Am J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. The EMBO J 5:2043–2049

    CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of Tomatoes, Potatoes, and Pepinos. Am J Bot 8:676–688

    Article  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  PubMed  CAS  Google Scholar 

  • Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian Blue Gum, Eucalyptus globules (Myrtaceae). DNA Res 12:215–220

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Xia H, Cao M (2004) A comparison of rice chloroplast genomes. Plant Phys 135:412–420

    Article  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2006) A comparison of the first two sequenced chloroplast genomes in Asteraceae: Lettuce and Sunflower. BMC Evol Biol (in review)

  • Tregoning JS, Nixon P, Kuroda H et al. (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res 31(4):1174–1179

    Article  PubMed  CAS  Google Scholar 

  • Vitanen PV, Devine AL, Kahn S, Deuel DL, Van-Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the E coli ubiC gene reveals that corismate is a readily abundant precursor for 4-hydroxybenzoic acid synthesis in plants. Plant Phys 136:4048–4060

    Article  CAS  Google Scholar 

  • Vomstein J, Hachtel W (1988) Deletions, insertions, short inverted repeats, sequences resembling att-lambda, and frame shift mutated open reading frames are involved in chloroplast DNA differences in the genus Oenothera subsection Munzia. Mol Gen Genet 213:513–518

    Article  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97

    Article  PubMed  CAS  Google Scholar 

  • Wyman SK, Boore JL, Jansen RK (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Investigations reported in this article were supported in part by grants from USDA 3611-21000-017-00D to Henry Daniell and from NSF DEB 0120709 to Robert K. Jansen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Daniell.

Additional information

Communicated by R. Hagemann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniell, H., Lee, SB., Grevich, J. et al. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112, 1503–1518 (2006). https://doi.org/10.1007/s00122-006-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0254-x

Keywords

Navigation