Skip to main content
Log in

DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

HPLC analysis was used to examine the cytosine methylation of total DNA extracted from four early-flowering lines that were induced by treating germinating seeds of flax (Linum usitatissimum) with the DNA demethylating agent 5-azacytidine. In the normal lines that gave rise to the induced early-flowering lines, flowering usually begins approximately 50 days after sowing. The early-flowering lines flower 7–13 days earlier than normal. The normal level of cytosine methylation was approximately 14% of the cytosines and 2.7% of the nucleosides. In the early-flowering lines, these levels were 6.2% lower than normal in DNA from the terminal leaf clusters of 14-day-old seedlings and 9.7% lower than normal in DNA from the cotyledons and immature shoot buds of 4-day-old seedlings. This hypomethylation was seen in lines that were five to nine generations beyond the treatment generation. The level of hypomethylation was similar in three of the four early-flowering lines, but was not as low in the fourth line, which flowers early but not quite as early as the other three lines. Unexpectedly, the degree of hypomethylation seen in segregant lines, derived by selecting for the early-flowering phenotype in the F2 and F3 generations of out-crosses, was similar to that seen in the early-flowering lines. Analysis of the methylation levels in segregating generations of out-crosses between early-flowering and normal lines demonstrated a decrease in methylation level during the selection of early-flowering segregants. The results suggest an association between hypomethylation and the early-flowering phenotype, and that the hypomethylated regions may not be randomly distributed throughout the genome of the early-flowering lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alleman M, Doctor J (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43:147–161

    Article  CAS  PubMed  Google Scholar 

  • Amado L, Abranches R, Neves N, Viegas W (1997) Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale: analysis of rDNA expression patterns. Chromosome Res 5:445–450

    Article  CAS  PubMed  Google Scholar 

  • Amyot LM (1997) Characterization of 5-azacytidine-induced early flowering lines in flax. MSc Thesis. Department of Biology, University of Waterloo, Waterloo

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA 90:287–291

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 11:2124–2136

    CAS  PubMed  Google Scholar 

  • Conklin KF, Groudine M (1984) Chromatin structure and gene expression. In: Razin A, Cedar H, Riggs AD (eds) DNA methylation biochemistry and biological significance. Springer, Berlin Heidelberg New York, pp 293–352

    Google Scholar 

  • Cui H, Fedoroff NV (2002) Inducible DNA demethylation mediated by the maize suppressor-mutator transposon-encoded TnpA protein. Plant Cell 14:1–17

    Article  PubMed  Google Scholar 

  • Cullis CA (1981) DNA sequence organization in the flax genome. Biochim Biophys Acta 652:1–15

    CAS  PubMed  Google Scholar 

  • Cullis CA, Swami S, Song Y (1999) RAPD polymorphisms detected among the flax genotrophs. Plant Mol Biol 41:795–800

    Article  CAS  PubMed  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (eds) (1969) Data for biochemical research, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Durrant A (1971) Induction and growth of flax genotrophs. Heredity 27:277–298

    Google Scholar 

  • Fieldes MA (1994) Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome 37:1–11

    CAS  Google Scholar 

  • Fieldes MA, Amyot LM (1999a) Epigenetic control of early flowering in flax lines induced by 5-azacytidine applied to germinating seed. J Hered 90:199–206

    Article  CAS  Google Scholar 

  • Fieldes MA, Amyot LM (1999b) Evaluating the potential of using 5-azacytidine as an epimutagen. Can J Bot 77:1617–1622

    Article  CAS  Google Scholar 

  • Fieldes MA, Harvey CG (2004) Differences in developmental programming and node number at flowering in the 5-azacytidine-induced, early-flowering flax lines and their controls. Int J Plant Sci 165:695–706

    Article  CAS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA 95:5824–5829

    Article  CAS  PubMed  Google Scholar 

  • Follmann H, Balzer H-J, Schleicher R (1990) Biosynthesis and distribution of methylcytosine in wheat DNA. How different are plant DNA methyltransferases? In: Clawson GA, Willis DB, Weissbach A, Jones PA (eds) Nucleic acid methylation. Liss, New York, pp 199–210

    Google Scholar 

  • Furner IJ, Sheikh MA, Collett CE (1998) Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149:651–662

    CAS  PubMed  Google Scholar 

  • Galaud J-P, Gaspar T, Boyer N (1993) Effect of anti-DNA methylation drugs on growth, level of methylated DNA, peroxidase activity and ethylene production of Bryonia dioica internodes. Physiol Plant 87:528–534

    Article  CAS  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  CAS  PubMed  Google Scholar 

  • Genger RK, Peacock WJ, Dennis ES, Finnegan EJ (2003) Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216:461–466

    CAS  PubMed  Google Scholar 

  • Glyn MCP, Egertová M, Gazdova B, Kovarik A, Bezdek M, Leitch AR (1997) The influence of 5-azacytidine on the condensation of the short arm of rye chromosome 1R in Triticum aestivum L. root tip meristematic nuclei. Chromosoma 106:485–492

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (1990) Gene expression and parental dominance in hybrid plants. Development [1990 Suppl]:21–28

  • Hoekenga OA, Muszynski MG, Cone KC (2000) Developmental patterns of chromatin structure and DNA methylation responsible for epigenetic expression of a maize regulatory gene. Genetics 155:1889–1902

    CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T, Páldi E, Rácz I, Lásztity D (2002) Effect of vernalisation and azacytidine on the DNA methylation level in wheat (Triticum aestivum L. cv. Mv 15). Proceedings of the Seventh Hungarian Congress on Plant Physiology, vol 46, pp 35–36

  • Houchins K, O’Dell M, Flavell RB, Gustafson JP (1997) Cytosine methylation and nucleolar dominance in cereal hybrids. Mol Gen Genet 255:294–301

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    CAS  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    Article  CAS  PubMed  Google Scholar 

  • Jaligot E, Rival A, Beulé T, Dussert S, Verdeil J-L (2000) Somoclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Article  CAS  Google Scholar 

  • Jaligot E, Beulé T, Baurens F-C Billotte N, Rival A (2004) Search for methylation-sensitive amplification polymorphisms associated with the “mantled” variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome 47:224–228

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (1984) Gene activation by 5-azacytidine. In: Razin A, Cedar H, Riggs AD (eds) DNA methylation biochemistry and biological significance. Springer, Berlin Heidelberg New York, pp 165–188

    Google Scholar 

  • Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 12:1447–1451

    Article  CAS  PubMed  Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Sci USA 93:12406–12411

    Article  CAS  Google Scholar 

  • Kakutani T, Munakata K, Richards EJ, Hirochika H (1999) Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics 151:831–838

    CAS  PubMed  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed  Google Scholar 

  • King GJ (1995) Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. J Hort Sci 70:333–342

    CAS  Google Scholar 

  • Kovarik A, Koukalova B, Lim KY, Matyasek R, Lichtenstein CP, Leitch AR, Bezdek M (2000) Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chromosome Res 8:527–541

    Article  CAS  PubMed  Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23

    Article  CAS  Google Scholar 

  • Li G, Hall TC, Holmes-Davis R (2002) Plant chromatin: development and gene control. BioEssays 24:234–243

    Article  CAS  PubMed  Google Scholar 

  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  Google Scholar 

  • Matassi G, Melis R, Kuo KC, Macaya G, Gehrke CW, Bernardi G (1992) Large-scale methylation patterns in the nuclear genomes of plants. Gene 122:239–245

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJM (1998) Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol Life Sci 54:94–103

    Article  CAS  PubMed  Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target site and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Article  CAS  PubMed  Google Scholar 

  • Mittelsten Scheid O, Probst AV, Afsar K, Paszkowski J (2002) Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc Natl Sci USA 99:13659–13662

    Article  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutant abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323

    Article  CAS  PubMed  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    CAS  PubMed  Google Scholar 

  • Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol Gen Genet 220:441–447

    Article  CAS  Google Scholar 

  • Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33:9–10

    Article  CAS  PubMed  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tissue Org Cult 70:155–161

    Article  CAS  Google Scholar 

  • Sheldon CC, Finnegan EJ, Rouse DT, Tadege M, Bagnall DJ, Helliwell CA, Peacock WJ, Dennis ES (2000a) The control of flowering by vernalization. Curr Opin Plant Biol 3:418–422

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000b) The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    Article  CAS  PubMed  Google Scholar 

  • Sober HA (ed) (1970) Handbook of biochemistry selected data for molecular biology, 2nd edn. Chemical Rubber, Cleveland

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJM (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    CAS  PubMed  Google Scholar 

  • Steimer A, Schöb H, Grossniklaus U (2004) Epigenetic control of plant development: new layers of complexity. Curr Opin Plant Biol 7:11–19

    Article  CAS  PubMed  Google Scholar 

  • Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone methylation in heterochromatin. Proc Natl Acad Sci USA 100:8823–8827

    Article  CAS  PubMed  Google Scholar 

  • Tatra GS, Miranda J, Chinnappa CC, Reid DM (2000) Effect of light quality and 5-azacytidine on genomic methylation and stem elongation in two ecotypes of Stellaria longipes. Physiol Plant 109:313–321

    Article  CAS  Google Scholar 

  • Timmis JN, Ingle J (1973) Environmentally induced changes in rRNA gene redundancy. Nature 244:235–236

    CAS  PubMed  Google Scholar 

  • Vanyushin BF, Belozerskii AN (1959) Nucleotide composition of deoxyribonucleic acid in higher plants (in Russian). Dokl Akad Nauk SSSR 129:944–946

    CAS  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    CAS  PubMed  Google Scholar 

  • Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239:219–224

    CAS  PubMed  Google Scholar 

  • Vyskot B, Koukalova B, Kovarik A, Sachambula L, Reynolds D, Bezdek M (1995) Meiotic transmission of a hypomethylated repetitive DNA family in tobacco. Theor Appl Genet 91:659–664

    Article  CAS  Google Scholar 

  • Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot 52:2265–2273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are extended to Dr. D. Goussev, for translation of the article by Vanyshin and Belozerskii. The research was made possible by two Natural Sciences and Engineering Research Council of Canada Undergraduate Student Research Awards (S.M.S. and J.C.L.B.) and a Discovery Grant (M.A.F.), and by infrastructure funded by the Canadian Foundation for Innovation, the Ontario Innovation Trust, Wilfrid Laurier University, and Varian Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fieldes.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fieldes, M.A., Schaeffer, S.M., Krech, M.J. et al. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111, 136–149 (2005). https://doi.org/10.1007/s00122-005-2005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2005-9

Keywords

Navigation