Skip to main content
Log in

SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The world’s oldest and largest Medicago truncatula collection is housed at the South Australian Research and Development Institute (SARDI). We used six simple sequence repeat (SSR) loci to analyse the genetic diversity and relationships between randomly selected individuals from 192 accessions in the core collection. M. truncatula is composed of three subspecies (ssp.): ssp. truncatula, ssp. longeaculeata, and ssp. tricycla. Analysis at the level of six SSR loci supports the concept of ssp. tricycla, all the samples of which showed unique alleles at two loci. Contingency Chi-squared tests were significant between ssp. tricycla and ssp. truncatula at four loci, suggesting a barrier to gene flow between these subspecies. In accessions defined as ssp. longeaculeata, no unique allelic distribution or diagnostic sizes were observed, suggesting this apparent ssp. is a morphological variant of ssp. truncatula. The data also suggest M. truncatula that exhibits unusually wide genotype dispersal throughout its native Mediterranean region, possibly due to animal and trade-related movements. Our results showed the collection to be highly diverse, exhibiting an average of 25 SSR alleles per locus, with over 90% of individuals showing discrete genotypes. The rich diversity of the SARDI collection provides an invaluable resource for studying natural allelic variation of M. truncatula. To efficiently exploit the variation in the SARDI collection, we have defined a subset of accessions (n=61) that maximises the diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agapow P-M, Burt A (2000) MultiLocus v1.2.2. Imperial College, London

    Google Scholar 

  • Baquerizo-Audiot E, Desplanque B, Prosperi J, Santoni S (2001) Characterization of microsatellite loci in the diploid legume Medicago truncatula (barrel medic). Mol Ecol Notes:1–3

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Bevan J, Crute I, Clarke D (1993a) Diversity and variation in expression of resistance to Erysiphe fischeri in Senecio vulgaris. Plant Pathol 42:647–653

    Article  Google Scholar 

  • Bevan J, Crute I, Clarke D (1993b) Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathol 42:636–646

    Article  Google Scholar 

  • Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 10:1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Brown AHD (1989a) The case for core collections. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 136–156

  • Brown AHD (1989b) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Choi H-K, Kim D, Uhm T, Limpens E, Lim H, Mun J-H, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Crawford EJ, Lake AWH, Boyce KG (1989) Breeding annual Medicago species for semi-arid conditions in southern Australia. Adv Agron 42:399–437

    Article  Google Scholar 

  • Doyle J (2001) Leguminosae. In: Brenner SMJ (ed) Encyclopaedia of genetics. Academic, San Diego, pp 1081–1085

    Google Scholar 

  • Eujayl I, Sledge M, Wang L, May G, Chekhovskiy K, Zwonitzer J, Mian M (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Goldstein D, Linares A, Cavalli-Sforza L, Feldman M (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92:6723–6727

    Article  PubMed  CAS  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson S, Lonn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292

    Article  PubMed  CAS  Google Scholar 

  • Hammerli A, Reusch T (2003) Genetic neighbourhood of clone structures in eelgrass meadows quantified by spatial autocorrelation of microsatellite markers. Heredity 91:448–455

    Article  PubMed  CAS  Google Scholar 

  • Hayden M, Stephenson P, Logojan A, Khatkar D, Rogers C, Koebner R, Snape J, Sharp P (2004) A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs. Theor Appl Genet 108:733–742

    Article  PubMed  CAS  Google Scholar 

  • Heyn C (1963) The annual species of Medicago. Scripta Hierosolymitana 12:1–154

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lunney HWM (1983) Vegetable fault in Australian wool: Classification, consequences, and economic loss. J Aust Inst Agric Sci 49:207–211

    Google Scholar 

  • McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  PubMed  CAS  Google Scholar 

  • Minch E, Ruiz-Linares A, Goldstein D (1995) Microsat 1.4, a computer program for the calculation of genetic distance from microsatellite data. Stanford University Medical Centre, Stanford

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    PubMed  CAS  Google Scholar 

  • Pearson CJ, Brown R, Collins WJ, Archer KA, Wood MS, Petersen C, Bootle B (1997) An Australian temperate pastures database. Aust J Agric Res 48:453–466

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Schoen D, Brown A (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  CAS  PubMed  Google Scholar 

  • Skinner D, Bauchan G, Auricht G, Hughes S (1999) A method for the efficient management and utilization of large germplasm collections. Crop Sci 39:1237–1242

    Article  Google Scholar 

  • Small E, Jomphe M (1989) A synopsis of the genus Medicago (Leguminosae). Can J Bot 67:3260–3294

    Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Thoquet P, Ghérardi M, Journet E, Kereszt A, Ané J, Prosperi J, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2

  • Workman P, Niswander J (1970) Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet 22:24–49

    PubMed  CAS  Google Scholar 

  • Yan H, Mudge J, Kim D, Shoemaker R, Cook D, Young N (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–55

    Article  PubMed  CAS  Google Scholar 

  • Yeh F, Yang R, Boyle T (1999) POPGENE version 1.31. Microsoft Windows-based software for population genetics analysis. University of Alberta and Centre for International Forestry Research, Alberta

  • Young N, Mudge J, Ellis T (2003) Legume genomes: more than peas in a pod. Curr Opin Plant Biol 6:199–204

    Article  PubMed  CAS  Google Scholar 

  • Yu J-K, La Rota M, Kantety RV, Sorrells ME (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Grains Research and Development Corporation of Australia (GRDC), and the Department of Education, Science and Training (DEST). We would like to thank Steve Hughes, the curator of Australian Medicago Genetic Resources Centre, for providing seed. The research was conducted at the State Agricultural Biotechnology Centre, Murdoch University, Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.R. Ellwood.

Additional information

Communicated by F. J. Muehlbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellwood, S., D’Souza, N., Kamphuis, L. et al. SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theor Appl Genet 112, 977–983 (2006). https://doi.org/10.1007/s00122-005-0202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0202-1

Keywords

Navigation