Skip to main content
Log in

Künstliche Intelligenz in der Psychiatrie – ein Überblick

Artificial intelligence in psychiatry—an overview

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die künstliche Intelligenz (KI) und die zugrunde liegenden Methoden des maschinellen Lernens und der neuronalen Netzwerke haben in den letzten Jahren dramatische Fortschritte gemacht und Leistungen in Domänen erreicht, die bis vor kurzem als spezifisch menschlich und für Computer nicht zugänglich galten. In diesem Überblick werden die diesen Fortschritten zugrunde liegenden methodischen Entwicklungen kurz dargestellt und in der Folge aktuelle und potenzielle Anwendungen auf die Psychiatrie in drei Bereichen diskutiert: Präzisionsmedizin und Biomarker, Verarbeitung natürlicher Sprache und KI-basierte psychotherapeutische Interventionen. Abschließend wird auf einige Risken dieser neuen Technologie hingewiesen.

Abstract

Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Banerjee D, Islam K, Mei G et al (2017) A deep transfer learning approach for improved post-traumatic stress disorder diagnosis. In: Data Mining (ICDM) 2017 IEEE International Conference on. IEEE, S 11–20

    Google Scholar 

  2. Bzdok D, Meyer-Lindenberg A (2018) Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging 3:223–230

    Article  PubMed  Google Scholar 

  3. Cao B, Zheng L, Zhang C et al (2017) Deepmood: modeling mobile phone typing dynamics for mood detection. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ACM, S 747–755

    Chapter  Google Scholar 

  4. Choi H, Ha S, Im HJ et al (2017) Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage Clin 16:586–594

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314

    Article  Google Scholar 

  6. Dai D, Wang J, Hua J et al (2012) Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci 6:63

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ebner-Priemer UW, Trull TJ (2009) Ecological momentary assessment of mood disorders and mood dysregulation. Psychol Assess 21:463–475

    Article  PubMed  Google Scholar 

  8. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28:3–71

    Article  PubMed  CAS  Google Scholar 

  9. Frangou S, Schwarz E, Meyer-Lindenberg A et al (2016) Identifying multimodal signatures associated with symptom clusters: the example of the IMAGEMEND project. World Psychiatry 15:179–180

    Article  PubMed  PubMed Central  Google Scholar 

  10. Frey CB, Osborne MA (2017) The future of employment: how susceptible are jobs to computerisation? Technol Forecast Soc Change 114:254–280

    Article  Google Scholar 

  11. Heinsfeld AS (2017) Identification of autism disorder through functional MRI and deep learning. In: Pontifícia Universidade Católica do Rio Grande do Sul

    Google Scholar 

  12. Hexmoor H, Mclaughlan B, Tuli G (2009) Natural human role in supervising complex control systems. J Exp Theor Artif Intell 21:59–77

    Article  Google Scholar 

  13. Hinton GE, Osindero S, Teh Y‑W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554

    Article  PubMed  Google Scholar 

  14. Insel T, Cuthbert B, Garvey M et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751

    Article  PubMed  Google Scholar 

  15. Insel TR, Scolnick EM (2006) Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry 11:11–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim J, Calhoun VD, Shim E et al (2016) Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124:127–146

    Article  PubMed  Google Scholar 

  17. Kuang D, Guo X, An X et al (2014) Discrimination of ADHD based on fMRI data with deep belief network. In: International Conference on Intelligent Computing. Springer, Berlin Heidelberg, S 225–232

    Google Scholar 

  18. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Habes M, Fan Y (2017) Deep ordinal ranking for multi-category diagnosis of alzheimer’s disease using hippocampal MRI data. arXiv preprint arXiv:1709.01599

    Google Scholar 

  20. Mcculloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  21. Mehrotra A, Hendley R, Musolesi M (2016) Towards multi-modal anticipatory monitoring of depressive states through the analysis of human-smartphone interaction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct ACM, S 1132–1138

    Chapter  Google Scholar 

  22. Miller GA (2003) The cognitive revolution: a historical perspective. Trends Cogn Sci 7:141–144

    Article  PubMed  Google Scholar 

  23. Minsky M, Papert S (1969) Perceptrons: Anlntroduction to computational geometry. MIT Press, Cambridge

    Google Scholar 

  24. Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  PubMed  CAS  Google Scholar 

  25. Myin-Germeys I, Klippel A, Steinhart H et al (2016) Ecological momentary interventions in psychiatry. Curr Opin Psychiatry 29:258–263

    Article  PubMed  Google Scholar 

  26. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  27. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386

    Article  PubMed  CAS  Google Scholar 

  28. Rosenstein M, Foltz PW, Delisi LE et al (2015) Language as a biomarker in those at high-risk for psychosis. Schizophr Res 165:249–250

    Article  PubMed  CAS  Google Scholar 

  29. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533

    Article  Google Scholar 

  30. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  31. Shickel B, Heesacker M, Benton S et al (2017) Hashtag Healthcare: from tweets to mental health journals using deep transfer learning. arXiv preprint arXiv:1708.01372

    Google Scholar 

  32. Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550:354

    Article  PubMed  CAS  Google Scholar 

  33. Thayer JF, Ahs F, Fredrikson M et al (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36:747–756

    Article  PubMed  Google Scholar 

  34. Tran T, Kavuluru R (2017) Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. J Biomed Inform 75:S138–S148

    Article  Google Scholar 

  35. Turing AM (1948) Intelligent machinery, a heretical theory. The Turing test: Verbal behavior as the hallmark of intelligence 105

    Google Scholar 

  36. Vieira S, Pinaya WH, Mechelli A (2017) Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev 74(Pt A):58. https://doi.org/10.1016/j.neubiorev.2017.01.002

    Article  PubMed  Google Scholar 

  37. Wang SH, Lv YD, Sui Y et al (2017) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42:2

    Article  PubMed  Google Scholar 

  38. Wang Y, Kosinski M (2018) Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. J Pers Soc Psychol 114:246

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meyer-Lindenberg.

Ethics declarations

Interessenkonflikt

A. Meyer-Lindenberg gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Lindenberg, A. Künstliche Intelligenz in der Psychiatrie – ein Überblick. Nervenarzt 89, 861–868 (2018). https://doi.org/10.1007/s00115-018-0557-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-018-0557-6

Schlüsselwörter

Keywords

Navigation