Skip to main content
Log in

Regulation of bone morphogenetic proteins in early embryonic development

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral – or back to belly – body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd–BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 4:599–604

    CAS  PubMed  Google Scholar 

  • Arora K, Nüsslein-Volhard C (1992) Altered mitotic domains reveal fate map changes in Drosophila embryos mutant for zygotic dorsoventral patterning genes. Development 114:1003–1024

    CAS  PubMed  Google Scholar 

  • Ashe HL, Levine M (1999) Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398:427–431

    Article  CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, De Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    Article  CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578

    Article  CAS  PubMed  Google Scholar 

  • Bakkers J, Hild M, Kramer C, Furutani-Seiki M, Hammerschmidt M (2002) Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2:617–627

    Article  CAS  PubMed  Google Scholar 

  • Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627

    Article  CAS  PubMed  Google Scholar 

  • Binnerts ME, Wen X, Cante-Barrett K, Bright J, Chen HT, Asundi V, Sattari P, Tang T, Boyle B, Funk W, Rupp F (2004) Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. Biochem Biophys Res Commun 315:272–280

    Article  CAS  PubMed  Google Scholar 

  • Blader P, Rastegar S, Fischer N, Strahle U (1997) Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science 278:1937–1940

    Article  CAS  PubMed  Google Scholar 

  • Blitz IL, Shimmi O, Wunnenberg-Stapleton K, O’Connor MB, Cho KW (2000) Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. Dev Biol 223:120–138

    Article  CAS  PubMed  Google Scholar 

  • Blitz IL, Cho KW, Chang C (2003) Twisted gastrulation loss-of-function analyses support its role as a BMP inhibitor during early Xenopus embryogenesis. Development 130:4975–4988

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Hemmati-Brivanlou A (1998) Cell fate determination in embryonic ectoderm. J Neurobiol 36:128–151

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Holtzman DA, Chau S, Chickering T, Woolf EA, Holmgren LM, Bodorova J, Gearing DP, Holmes WE, Brivanlou AH (2001) Twisted gastrulation can function as a BMP antagonist. Nature 410:483–487

    Article  CAS  PubMed  Google Scholar 

  • Coffinier C, Tran U, Larrain J, De Robertis EM (2001) Neuralin-1 is a novel Chordin-related molecule expressed in the mouse neural plate. Mech Dev 100:119–122

    Article  CAS  PubMed  Google Scholar 

  • Coffinier C, Ketpura N, Tran U, Geissert D, De Robertis EM (2002) Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular regulator of BMP signaling. Gene Express Patterns 2:189–194

    Article  CAS  Google Scholar 

  • Collavin L, Kirschner MW (2003) The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130:805–816

    Article  CAS  PubMed  Google Scholar 

  • Conley CA, Silburn R, Singer MA, Ralston A, Rohwer-Nutter D, Olson DJ, Gelbart W, Blair SS (2000) Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development 127:3947–3959

    CAS  PubMed  Google Scholar 

  • Connors SA, Trout J, Ekker M, Mullins MC (1999) The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126:3119–3130

    CAS  PubMed  Google Scholar 

  • Dale L, Evans W, Goodman SA (2002) Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech Dev 119:177–190

    Article  CAS  PubMed  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    Article  PubMed  Google Scholar 

  • De Robertis EM, Wessely O, Oelgeschlager M, Brizuela B, Pera E, Larrain J, Abreu J, Bachiller D (2001) Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer. Int J Dev Biol 45:189–197

    PubMed  Google Scholar 

  • Derynck R, Feng XH (1997) TGF-beta receptor signaling. Biochim Biophys Acta 1333:F105–F150

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Gelbart WM, Harland RM, Heldin C-H, Kern SE, Massagué J, Melton DA, Mlodzik M, Padgett RW, Roberts AB, Smith J, Thomsen GH, Vogelstein B, Wang X-F (1996) Nomenclature: vertebrate mediators of TGFβ family signals. Cell 87:173

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang Y, Feng XH (1998) Smads: transcriptional activators of TGF-beta responses. Cell 95:737–740

    Article  CAS  PubMed  Google Scholar 

  • Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS, Bouwmeester T, Hammerschmidt M (2000) Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127:343–354

    CAS  PubMed  Google Scholar 

  • Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124:2325–2334

    CAS  PubMed  Google Scholar 

  • Eeden FJ van, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nusslein-Volhard C (1996) Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123:255–262

    PubMed  Google Scholar 

  • Eimon PM, Harland RM (1999) In Xenopus embryos, BMP heterodimers are not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral patterning. Dev Biol 216:29–40

    Article  CAS  PubMed  Google Scholar 

  • Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419:304–308

    Article  CAS  PubMed  Google Scholar 

  • Entchev EV, Schwabedissen A, Gonzalez-Gaitan M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103:981–991

    Article  CAS  PubMed  Google Scholar 

  • Faure S, Lee MA, Keller T, Dijke P ten, Whitman M (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127:2917–2931

    CAS  PubMed  Google Scholar 

  • Ferguson EL, Anderson KV (1992) Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114:583–597

    CAS  PubMed  Google Scholar 

  • François V, Bier E (1995) Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal-ventral axis formation. Cell 80:19–20

    Article  PubMed  Google Scholar 

  • François V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8:2602–2616

    PubMed  Google Scholar 

  • Garcia Abreu J, Coffinier C, Larraín J, Oelgeschläger M, De Robertis EM (2002) Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 287:39–47

    PubMed  Google Scholar 

  • Geoffroy Saint-Hilaire E (1822) Considérations générales sur la vertèbre. Mém Mus Hist Nat 9:89–119

  • Godsave SF, Slack JM (1989) Clonal analysis of mesoderm induction in Xenopus laevis. Dav Biol 134:486–490

    CAS  Google Scholar 

  • Goodman SA, Albano R, Wardle FC, Matthews G, Tannahill D, Dale L (1998) BMP1-related metalloproteinases promote the development of ventral mesoderm in early Xenopus embryos. Dev Biol 195:144–157

    Article  CAS  PubMed  Google Scholar 

  • Graf D, Timmons PM, Hitchins M, Episkopou V, Moore G, Ito T, Fujiyama A, Fisher AG, Merkenschlager M (2001) Evolutionary conservation, developmental expression, and genomic mapping of mammalian Twisted gastrulation. Mamm Genome 12:554–560

    CAS  PubMed  Google Scholar 

  • Graf D, Nethisinghe S, Palmer DB, Fisher AG, Merkenschlager M (2002) The developmentally regulated expression of Twisted gastrulation reveals a role for bone morphogenetic proteins in the control of T cell development. J Exp Med 196:163–171

    Article  CAS  PubMed  Google Scholar 

  • Green J (2002) Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 225:392–408

    Article  CAS  PubMed  Google Scholar 

  • Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides AN, Kwiatkowski W, Affolter M, Vale WW, Belmonte JC, Choe S (2002) Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420:636–642

    Article  CAS  PubMed  Google Scholar 

  • Grunz H, Tacke L (1989) Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, He W, MacLaughlin DT, Eijnden-van Raaij J van den, Donahoe PK, Li E (1999) The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 126:2551–2561

    CAS  PubMed  Google Scholar 

  • Gurdon JB, Bourillot PY (2001) Morphogen gradient interpretation. Nature 413:797–803

    Article  CAS  PubMed  Google Scholar 

  • Hager-Theodorides AL, Outram SV, Shah DK, Sacedon R, Shrimpton RE, Vicente A, Varas A, Crompton T (2002) Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation. J Immunol 169:5496–5504

    CAS  PubMed  Google Scholar 

  • Hammerschmidt M, Pelegri F, Mullins MC, Kane DA, Eeden FJ van, Granato M, Brand M, Furutani-Seiki M, Haffter P, Heisenberg CP, Jiang YJ, Kelsh RN, Odenthal J, Warga RM, Nusslein-Volhard C (1996a) dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123:95–102

    CAS  PubMed  Google Scholar 

  • Hammerschmidt M, Serbedzija GN, McMahon AP (1996b) Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev 10:2452–2461

    CAS  PubMed  Google Scholar 

  • Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Miyazono K, Dijke P ten (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438

    Article  CAS  PubMed  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376:249–253

    Article  CAS  PubMed  Google Scholar 

  • Holley SA, Neul JL, Attisano L, Wrana JL, Sasai Y, O’Connor MB, De Robertis EM, Ferguson EL (1996) The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell 86:607–617

    Article  CAS  PubMed  Google Scholar 

  • Holowacz T, Sokol S (1999) FGF is required for posterior neural patterning but not for neural induction. Dev Biol 205:296–308

    Article  CAS  PubMed  Google Scholar 

  • Hyvonen M (2003) CHRD, a novel domain in the BMP inhibitor chordin, is also found in microbial proteins. Trends Biochem Sci 28:470–473

    Article  CAS  PubMed  Google Scholar 

  • Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E (2001) The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 27:412–416

    Article  CAS  PubMed  Google Scholar 

  • Kamimura M, Matsumoto K, Koshiba-Takeuchi K, Ogura T (2004) Vertebrate crossveinless 2 is secreted and acts as an extracellular modulator of the BMP signaling cascade. Dev Dyn 230:434–445

    Article  CAS  PubMed  Google Scholar 

  • Karaulanov E, Knochel W, Niehrs C (2004) Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J 23:844–856

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124:4457–4466

    CAS  PubMed  Google Scholar 

  • Kretzschmar M, Doody J, Massagué J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  CAS  PubMed  Google Scholar 

  • Kudoh T, Concha ML, Houart C, Dawid IB, Wilson SW (2004) Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 131:3581–3592

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Nakabayashi J, Yamamoto TS, Mochii M, Ueno N (2001) Visualization of endogenous BMP signaling during Xenopus development. Differentiation 67:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    CAS  PubMed  Google Scholar 

  • Larrain J, Bachiller D, Lu B, Agius E, Piccolo S, De Robertis EM (2000) BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127:821–830

    CAS  PubMed  Google Scholar 

  • Larrain J, Oelgeschlager M, Ketpura NI, Reversade B, Zakin L, De Robertis EM (2001) Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. Development 128:4439–4447

    CAS  PubMed  Google Scholar 

  • Lawrence PA (2001) Morphogens: how big is the big picture? Nat Cell Biol 3: E151–E154

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kimelman D (2002) A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2:607–616

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH (1989) Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 264:13377–13380

    CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Marcus JM (2003) Female site-specific transposase-induced recombination: a high-efficiency method for fine mapping mutations on the X chromosome in Drosophila. Genetics 163:591–597

    CAS  PubMed  Google Scholar 

  • Marqués G, Musacchio M, Shimell MJ, Wünnenberg-Stapleton K, Cho KWY, O’Connor MB (1997) Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91:417–426

    Article  PubMed  Google Scholar 

  • Martyn U, Schulte-Merker S (2003) The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev Biol 260:58–67

    Article  CAS  PubMed  Google Scholar 

  • Mason ED, Konrad KD, Webb CD, Marsh JL (1994) Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev 8:1489–1501

    CAS  PubMed  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  Google Scholar 

  • Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178

    Article  CAS  PubMed  Google Scholar 

  • Massagué J, Blain SW, Lo RS (2000) TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  • Matsui M, Mizuseki K, Nakatani J, Nakanishi S, Sasai Y (2000) Xenopus Kielin: a novel patterning factor containing multiple Chd-type repeats secreted from the embryonic midline. Proc Natl Acad Sci USA 97:5291–5296

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA (2003) Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28:663–670

    Article  CAS  PubMed  Google Scholar 

  • Miller-Bertoglio V, Carmany-Rampey A, Furthauer M, Gonzalez EM, Thisse C, Thisse B, Halpern ME, Solnica-Krezel L (1999) Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev Biol 214:72–86

    Article  CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23:5664–5679

    Article  CAS  PubMed  Google Scholar 

  • Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, Brand M, Eeden FJ van, Furutani-Seiki M, Granato M, Haffter P, Heisenberg CP, Jiang YJ, Kelsh RN, Nusslein-Volhard C (1996) Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123:81–93

    CAS  PubMed  Google Scholar 

  • Nakayama N, Han CE, Scully S, Nishinakamura R, He C, Zeni L, Yamane H, Chang D, Yu D, Yokota T, Wen D (2001) A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages. Dev Biol 232:372–387

    Article  CAS  PubMed  Google Scholar 

  • Nakayama N, Han CY, Cam L, Lee JI, Pretorius J, Fisher S, Rosenfeld R, Scully S, Nishinakamura R, Duryea D, Van G, Bolon B, Yokota T, Zhang K (2004) A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development 131:229–240

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 199:93–110

    Article  CAS  PubMed  Google Scholar 

  • Nosaka T, Morita S, Kitamura H, Nakajima H, Shibata F, Morikawa Y, Kataoka Y, Ebihara Y, Kawashima T, Itoh T, Ozaki K, Senba E, Tsuji K, Makishima F, Yoshida N, Kitamura T (2003) Mammalian twisted gastrulation is essential for skeleto-lymphogenesis. Mol Cell Biol 23:2969–2980

    Article  CAS  PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the second chromosome. Wilhelm Roux’ Arch Dev Biol 193:267–282

    Google Scholar 

  • Oelgeschläger M, Larrain J, Geissert D, De Robertis EM (2000) The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405:757–763

    Article  PubMed  Google Scholar 

  • Oelgeschläger M, Reversade B, Larrain J, Little S, Mullins MC, De Robertis EM (2003a) The pro-BMP activity of Twisted gastrulation is independent of BMP binding. Development 130:4047–4056

    Article  PubMed  Google Scholar 

  • Oelgeschläger M, Kuroda H, Reversade B, De Robertis EM (2003b) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev Cell 4:219–230

    Article  PubMed  Google Scholar 

  • Oelgeschläger M, Tran U, Grubisic K, De Robertis EM (2004) Identification of a second Xenopus twisted gastrulation gene. Int J Dev Biol 48:57–61

    PubMed  Google Scholar 

  • Onichtchouk D, Glinka A, Niehrs C (1998) Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development 125:1447–1456

    CAS  PubMed  Google Scholar 

  • Pappano WN, Steiglitz BM, Scott IC, Keene DR, Greenspan DS (2003) Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases. Mol Cell Biol 23:4428–4438

    Article  CAS  PubMed  Google Scholar 

  • Pera EM, Ikeda A, Eivers E, De Robertis EM (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17:3023–3028

    Article  CAS  PubMed  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  CAS  PubMed  Google Scholar 

  • Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91:407–416

    Article  CAS  PubMed  Google Scholar 

  • Ribisi S Jr, Mariani FV, Aamar E, Lamb TM, Frank D, Harland RM (2000) Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev Biol 227:183–196

    Article  CAS  PubMed  Google Scholar 

  • Richard-Parpaillon L, Heligon C, Chesnel F, Boujard D, Philpott A (2002) The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 244:407–417

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, Hermanson S, Ekker SC, O’Connor MB, Marsh JL (2001) Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410:479–483

    Article  CAS  PubMed  Google Scholar 

  • Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura S, Yamamoto TS, Ueno N, Noda M (2001) Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293:111–115

    Article  CAS  PubMed  Google Scholar 

  • Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124:4739–4748

    CAS  PubMed  Google Scholar 

  • Sasai Y (1998) Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21:455–458

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336

    Article  CAS  PubMed  Google Scholar 

  • Sato SM, Sargent TD (1989) Development of neural inducing capacity in dissociated Xenopus embryos. Dev Biol 134:263–266

    CAS  PubMed  Google Scholar 

  • Schmid B, Furthauer M, Connors SA, Trout J, Thisse B, Thisse C, Mullins MC (2000) Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127:957–967

    CAS  PubMed  Google Scholar 

  • Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387:862–863

    Article  CAS  PubMed  Google Scholar 

  • Scott IC, Blitz IL, Pappano WN, Imamura Y, Clark TG, Steiglitz BM, Thomas CL, Maas SA, Takahara K, Cho KW, Greenspan DS (1999) Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev Biol 213:283–300

    Article  CAS  PubMed  Google Scholar 

  • Scott IC, Blitz IL, Pappano WN, Maas SA, Cho KW, Greenspan DS (2001) Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 410:475–478

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  • Shimell MJ, Ferguson EL, Childs SR, O’Connor MB (1991) The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 67:469–481

    Article  CAS  PubMed  Google Scholar 

  • Shimmi O, O’Connor MB (2003) Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo. Development 130:4673–4682

    Article  CAS  PubMed  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840

    Article  CAS  PubMed  Google Scholar 

  • Smith M, Herrell S, Lusher M, Lako L, Simpson C, Wiestner A, Skoda R, Ireland M, Strachan T (1999) Genomic organisation of the human chordin gene and mutation screening of candidate Cornelia de Lange syndrome genes. Hum Genet 105:104–111

    Article  CAS  PubMed  Google Scholar 

  • Solnica-Krezel L, Stemple DL, Mountcastle-Shah E, Rangini Z, Neuhauss SC, Malicki J, Schier AF, Stainier DY, Zwartkruis F, Abdelilah S, Driever W (1996) Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123:67–80

    CAS  PubMed  Google Scholar 

  • Spemann H, Mangold H (1924) Über Induktion von Embryonalanlagen durch Implantation Artfremder Organisatoren. Wilhelm Roux’ Arch Entwicklungsmech Org 100: 599–638

  • Srinivasan S, Rashka KE, Bier E (2002) Creation of a Sog morphogen gradient in the Drosophila embryo. Dev Cell 2:91–101

    Article  CAS  PubMed  Google Scholar 

  • St. Johnston RD, Gelbart WM (1987) Decapentaplegic transcripts are localized along the dorsal–ventral axis of the Drosophila embryo. EMBO J 6:2785–2791

    PubMed  Google Scholar 

  • Stern CD (2002) Induction and initial patterning of the nervous system: the chick embryo enters the scene. Curr Opin Genet Dev 12:447–451

    Article  CAS  PubMed  Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    Article  CAS  PubMed  Google Scholar 

  • Sutherland DJ, Li M, Liu XQ, Stefancsik R, Raftery LA (2003) Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo. Development 130:5705–5716

    Article  CAS  PubMed  Google Scholar 

  • Surveyor GA, Brigstock DR (1999) Immunohistochemical localization of connective tissue growth factor (CTGF) in mouse embryo between days 7.5 and 14.5 gestation. Growth Factors 17:115–124

    CAS  PubMed  Google Scholar 

  • Surveyor GA, Wilson AK, Brigstock DR (1998) Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol Reprod 59:1207–1213

    CAS  PubMed  Google Scholar 

  • Teleman AA, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103:971–980

    Article  CAS  PubMed  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  • Urist MR, Mikulski A, Lietze A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA 76:1828–1832

    CAS  PubMed  Google Scholar 

  • Vilmos P, Gaudenz K, Hegedus Z, Marsh JL (2001) The Twisted gastrulation family of proteins, together with the IGFBP and CCN families, comprise the TIC superfamily of cysteine rich secreted factors. Mol Pathol 54:317–23

    Article  CAS  PubMed  Google Scholar 

  • Vincent JP, Dubois L (2002) Morphogen transport along epithelia, an integrated trafficking problem. Dev Cell 3:615–623

    Article  CAS  PubMed  Google Scholar 

  • Wagner DS, Mullins MC (2002) Modulation of BMP activity in dorsal-ventral pattern formation by the chordin and ogon antagonists. Dev Biol 245:109–123

    Article  CAS  PubMed  Google Scholar 

  • Waite KA, Eng C (2003) From developmental disorder to heritable cancer: it’s all in the BMP/TGF-beta family. Nat Rev Genet 4:763–773

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15:411–433

    Article  CAS  PubMed  Google Scholar 

  • Wilson SI, Edlund T (2001) Neural induction: toward a unifying mechanism. Nat Neurosci 4 [Suppl]: 1161–1168

    Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333

    Article  CAS  PubMed  Google Scholar 

  • Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124:3177–3184

    CAS  PubMed  Google Scholar 

  • Wolpert L (1996) One hundred years of positional information. Trends Genet 12:359–364

    Article  CAS  PubMed  Google Scholar 

  • Wozney JM (1998) The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult. Eur J Oral Sci 106 [Suppl 1]:160–166

    Google Scholar 

  • Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27:S2–S8

    Article  PubMed  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    CAS  PubMed  Google Scholar 

  • Wrana J, Pawson T (1997) Signal transduction: mad about SMADs. Nature 388:28–29

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Shimizu T, Muraoka O, Bae YK, Hirata T, Nojima H, Kawakami A, Hirano T, Hibi M (2003) Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130:2705–2716

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95

    Article  PubMed  Google Scholar 

  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Sturtevant MA, Biehs B, Francois V, Padgett RW, Blackman RK, Bier E (1996) The Drosophila decapentaplegic and short gastrulation genes function antagonistically during adult wing vein development. Development 122:4033–4044

    CAS  PubMed  Google Scholar 

  • Zakin L, De Robertis EM (2004) Inactivation of mouse Twisted gastrulation reveals its role in promoting Bmp4 activity during forebrain development. Development 131:413–424

    Article  CAS  PubMed  Google Scholar 

  • Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35:43–56

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  PubMed  Google Scholar 

  • Zusman SB, Sweeton D, Wieschaus EF (1988) Short gastrulation, a mutation causing delays in stage-specific cell shape changes during gastrulation in Drosophila melanogaster. Dev Biol 129:417–427

    CAS  PubMed  Google Scholar 

  • Zwijsen A, Verschueren K, Huylebroeck D (2003) New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 546:133–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cassada for critical reading of the manuscript and three anonymous reviewers for helpful comments. Work in the laboratory of M. Oelgeschläger is supported by the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oelgeschläger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Oelgeschläger, M. Regulation of bone morphogenetic proteins in early embryonic development. Naturwissenschaften 91, 519–534 (2004). https://doi.org/10.1007/s00114-004-0575-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0575-z

Keywords

Navigation