Skip to main content

Advertisement

Log in

The FOXO family of transcription factors: key molecular players in gastric cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients’ health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuzaki J, Tsugawa H, Suzuki H (2021) Precision medicine approaches to prevent gastric cancer. Gut Liver 15:3–12. https://doi.org/10.5009/gnl19257

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J (2021) Long non-coding RNAs: biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 23:458–476. https://doi.org/10.1016/j.omto.2021.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Usui G, Matsusaka K, Mano Y, Urabe M, Funata S, Fukayama M, Ushiku T, Kaneda A (2021) DNA methylation and genetic aberrations in gastric cancer. Digestion 102:25–32. https://doi.org/10.1159/000511243

    Article  CAS  PubMed  Google Scholar 

  5. Choi SJ, Jung SW, Huh S, Chung YS, Cho H, Kang H (2017) Alteration of DNA methylation in gastric cancer with chemotherapy. J Microbiol Biotechnol 27:1367–1378. https://doi.org/10.4014/jmb.1704.04035

    Article  CAS  PubMed  Google Scholar 

  6. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA et al (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–1458. https://doi.org/10.1126/science.aad9024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abadi AJ, Zarrabi A, Hashemi F, Zabolian A, Najafi M, Entezari M, Hushmandi K, Aref AR, Khan H, Makvandi P et al (2021) The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 180:608–624. https://doi.org/10.1016/j.ijbiomac.2021.02.202

    Article  CAS  PubMed  Google Scholar 

  8. Padua D, Figueira P, Ribeiro I, Almeida R, Mesquita P (2020) The relevance of transcription factors in gastric and colorectal cancer stem cells identification and eradication. Front Cell Dev Biol 8:442. https://doi.org/10.3389/fcell.2020.00442

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qu Y, Dang S, Hou P (2013) Gene methylation in gastric cancer. Clin Chim Acta 424:53–65. https://doi.org/10.1016/j.cca.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P, Wang J (2018) Critical role of FOXO3a in carcinogenesis. Mol Cancer 17:104. https://doi.org/10.1186/s12943-018-0856-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gui T, Burgering BMT (2021) FOXOs: masters of the equilibrium. FEBS J. https://doi.org/10.1111/febs.16221

  12. Moon KM, Lee MK, Hwang T, Choi CW, Kim MS, Kim HR, Lee B (2021) The multi-functional roles of forkhead box protein O in skin aging and diseases. Redox Biol 46:102101. https://doi.org/10.1016/j.redox.2021.102101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng Z (2019) The FoxO-autophagy axis in health and disease. Trends Endocrinol Metab 30:658–671. https://doi.org/10.1016/j.tem.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  14. Hornsveld M, Dansen TB, Derksen PW, Burgering BMT (2018) Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol 50:90–100. https://doi.org/10.1016/j.semcancer.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  15. Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao MS, Little P, Zheng W (2020) The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 40:2089–2113. https://doi.org/10.1002/med.21695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146

    Article  CAS  Google Scholar 

  17. Laissue P (2019) The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 18:5. https://doi.org/10.1186/s12943-019-0938-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Su P, Yin C, Lin X, Wang X, Gao Y, Patil S, War AR, Qadir A, Tian Y et al (2020) The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci 21:692. https://doi.org/10.3390/ijms21030692

    Article  CAS  PubMed Central  Google Scholar 

  19. Link W (2019) Introduction to FOXO biology. Methods Mol Biol 1890:1–9. https://doi.org/10.1007/978-1-4939-8900-3_1

    Article  CAS  PubMed  Google Scholar 

  20. Wang XH, Jiang ZH, Yang HM, Zhang Y, Xu LH (2021) Hypoxia-induced FOXO4/LDHA axis modulates gastric cancer cell glycolysis and progression. Clin Transl Med 11:e279. https://doi.org/10.1002/ctm2.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Chen WR, Xing D (2012) A pathway from JNK through decreased ERK and Akt activities for FOXO3a nuclear translocation in response to UV irradiation. J Cell Physiol 227:1168–1178. https://doi.org/10.1002/jcp.22839

    Article  CAS  PubMed  Google Scholar 

  22. Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q (2020) Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 500:110628. https://doi.org/10.1016/j.mce.2019.110628

    Article  CAS  PubMed  Google Scholar 

  23. Lee S, Dong HH (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol 233:R67–R79. https://doi.org/10.1530/JOE-17-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiramongkol Y, Lam EW (2020) FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev 39:681–709. https://doi.org/10.1007/s10555-020-09883-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207. https://doi.org/10.1111/acel.12427

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez AM, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71:1657–1671. https://doi.org/10.1007/s00018-013-1513-z

    Article  CAS  PubMed  Google Scholar 

  27. Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M (2014) Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron 81:561–573. https://doi.org/10.1016/j.neuron.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Yang C, Chu M, Wang ZW, Xue B (2021) Cdc20 induces the radioresistance of bladder cancer cells by targeting FoxO1 degradation. Cancer Lett 500:172–181. https://doi.org/10.1016/j.canlet.2020.11.052

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji T, Maeda Y, Kita K, Murakami K, Saya H, Takemura H, Inaki N, Oshima M, Oshima H (2021) FOXO3 is a latent tumor suppressor for FOXO3-positive and cytoplasmic-type gastric cancer cells. Oncogene 40:3072–3086. https://doi.org/10.1038/s41388-021-01757-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen YH, Li CL, Chen WJ, Liu J, Wu HT (2021) Diverse roles of FOXO family members in gastric cancer. World J Gastrointest Oncol 13:1367–1382. https://doi.org/10.4251/wjgo.v13.i10.1367

    Article  PubMed  PubMed Central  Google Scholar 

  31. Willson J (2022) Getting organized with non-coding RNAs. Nat Rev Genet 23:1. https://doi.org/10.1038/s41576-021-00435-8

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Wei YJ, Zhang YF, Liu HW, Zhang YF (2021) Emerging functions and clinical applications of exosomal ncRNAs in ovarian cancer. Front Oncol 11:765458. https://doi.org/10.3389/fonc.2021.765458

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X et al (2019) FOXK transcription factors: regulation and critical role in cancer. Cancer Lett 458:1–12. https://doi.org/10.1016/j.canlet.2019.05.030

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Yu F, Zhang Y, Chang W, Zhou M (2022) The effects and mechanisms of flavonoids on cancer prevention and therapy: focus on gut microbiota. Int J Biol Sci 18:1451–1475. https://doi.org/10.7150/ijbs.68170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Yu F, Li P, Wang K (2020) Emerging function and clinical significance of exosomal circRNAs in cancer. Mol Ther Nucleic Acids 21:367–383. https://doi.org/10.1016/j.omtn.2020.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu J, Ni Q, Zhang S, Hua R, Tao R, Tang C, Feng S (2020) MicroRNA-92a promotes proliferation and invasiveness of gastric cancer cell by targeting FOXO1 gene. Cell Mol Biol (Noisy-le-grand) 66:95–100

  37. Zang Y, Wang T, Pan J, Gao F (2017) miR-215 promotes cell migration and invasion of gastric cancer cell lines by targeting FOXO1. Neoplasma 64:579–587. https://doi.org/10.4149/neo_2017_412

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Zhang J, Chen T, Yin P, Yang J, Cao Y (2015) miR-132 upregulation promotes gastric cancer cell growth through suppression of FoxO1 translation. Tumour Biol 37:15551–15557. https://doi.org/10.1007/s13277-015-3924-y

    Article  CAS  Google Scholar 

  39. Li F, Liu B, Gao Y, Liu Y, Xu Y, Tong W, Zhang A (2014) Upregulation of microRNA-107 induces proliferation in human gastric cancer cells by targeting the transcription factor FOXO1. FEBS Lett 588:538–544. https://doi.org/10.1016/j.febslet.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  40. Bai M, Li J, Yang H, Zhang H, Zhou Z, Deng T, Zhu K, Ning T, Fan Q, Ying G et al (2019) miR-135b delivered by gastric tumor exosomes inhibits FOXO1 expression in endothelial cells and promotes angiogenesis. Mol Ther 27:1772–1783. https://doi.org/10.1016/j.ymthe.2019.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan C, Liu S, Zhao Y, Han Y, Yang L, Tao G, Li Q, Zhang L (2013) Upregulation of miR-370 contributes to the progression of gastric carcinoma via suppression of FOXO1. Biomed Pharmacother 67:521–526. https://doi.org/10.1016/j.biopha.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  42. Xie C, Guo Y, Lou S (2020) LncRNA ANCR promotes invasion and migration of gastric cancer by regulating FoxO1 expression to inhibit macrophage M1 polarization. Dig Dis Sci 65:2863–2872. https://doi.org/10.1007/s10620-019-06019-1

    Article  CAS  PubMed  Google Scholar 

  43. Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, Tang Q, Shan C, Lv Y, Zhang K et al (2020) CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer 19:56. https://doi.org/10.1186/s12943-020-01160-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan M, Niu L, Liu J, Yao Y, Li H (2021) circEVI5 acts as a miR-4793-3p sponge to suppress the proliferation of gastric cancer. Cell Death Dis 12:774. https://doi.org/10.1038/s41419-021-04061-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He X, Zou K (2020) MiRNA-96-5p contributed to the proliferation of gastric cancer cells by targeting FOXO3. J Biochem 167:101–108. https://doi.org/10.1093/jb/mvz080

    Article  CAS  PubMed  Google Scholar 

  46. Li M, Wang Y, Liu X, Zhang Z, Wang L, Li Y (2020) miR-629 targets FOXO3 to promote cell apoptosis in gastric cancer. Exp Ther Med 19:294–300. https://doi.org/10.3892/etm.2019.8168

    Article  CAS  PubMed  Google Scholar 

  47. Maruyama S, Furuya S, Shiraishi K, Shimizu H, Saito R, Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida H et al (2019) Inhibition of apoptosis by miR1225p in alphafetoproteinproducing gastric cancer. Oncol Rep 41:2595–2600. https://doi.org/10.3892/or.2019.7023

    Article  CAS  PubMed  Google Scholar 

  48. Xie T, Wu D, Li S, Li X, Wang L, Lu Y, Song Q, Sun X, Wang X (2020) microRNA-582 potentiates liver and lung metastasis of gastric carcinoma cells through the FOXO3-mediated PI3K/Akt/snail pathway. Cancer Manag Res 12:5201–5212. https://doi.org/10.2147/CMAR.S245674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu J, Zhang PY, Li P, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Huang CM, Zheng CH (2019) Circular RNA hsa_circ_0001368 suppresses the progression of gastric cancer by regulating miR-6506-5p/FOXO3 axis. Biochem Biophys Res Commun 512:29–33. https://doi.org/10.1016/j.bbrc.2019.02.111

    Article  CAS  PubMed  Google Scholar 

  50. Wang GJ, Liu GH, Ye YW, Fu Y, Zhang XF (2015) The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun 459:629–635. https://doi.org/10.1016/j.bbrc.2015.02.160

    Article  CAS  PubMed  Google Scholar 

  51. Yu C, Chen DQ, Liu HX, Li WB, Lu JW, Feng JF (2019) Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p. Biomed Pharmacother 109:2327–2334. https://doi.org/10.1016/j.biopha.2018.10.061

    Article  CAS  PubMed  Google Scholar 

  52. Miao Z, Guo X, Tian L (2019) The long noncoding RNA NORAD promotes the growth of gastric cancer cells by sponging miR-608. Gene 687:116–124. https://doi.org/10.1016/j.gene.2018.11.052

    Article  CAS  PubMed  Google Scholar 

  53. Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H et al (2022) miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 50:D222–D230. https://doi.org/10.1093/nar/gkab1079

    Article  CAS  PubMed  Google Scholar 

  54. Chen X, Li X, Wei C, Zhao C, Wang S, Gao J (2021) High expression of SETDB1 mediated by miR-29a-3p associates with poor prognosis and immune invasion in breast invasive carcinoma. Translational Cancer Research 10:5065–5075. https://doi.org/10.21037/tcr-21-1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J (2021) Mechanisms of action and clinical implications of MicroRNAs in the drug resistance of gastric cancer. Front Oncol 11:768918. https://doi.org/10.3389/fonc.2021.768918

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wei K, Ma Z, Yang F, Zhao X, Jiang W, Pan C, Li Z, Pan X, He Z, Xu J et al (2022) M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett 526:205–216. https://doi.org/10.1016/j.canlet.2021.10.045

    Article  CAS  PubMed  Google Scholar 

  57. He J, Qi H, Chen F, Cao C (2017) MicroRNA-25 contributes to cisplatin resistance in gastric cancer cells by inhibiting forkhead box O3a. Oncol Lett 14:6097–6102. https://doi.org/10.3892/ol.2017.6982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duan Y, Wu H, Hao X, Li F, Liu J, Zhu C, Dong Q (2021) Knockdown of long non-coding MIR210HG inhibits cell proliferation, migration, and invasion in hepatoblastoma via the microRNA-608-FOXO6 axis. J Int Med Res 49:3000605211054695. https://doi.org/10.1177/03000605211054695

    Article  CAS  PubMed  Google Scholar 

  59. Wei YT, Guo DW, Hou XZ, Jiang DQ (2017) miRNA-223 suppresses FOXO1 and functions as a potential tumor marker in breast cancer. Cell Mol Biol (Noisy-le-grand) 63:113–118. https://doi.org/10.14715/cmb/2017.63.5.21

  60. Chang DL, Wei W, Yu ZP, Qin CK (2017) miR-152-5p inhibits proliferation and induces apoptosis of liver cancer cells by up-regulating FOXO expression. Pharmazie 72:338–343. https://doi.org/10.1691/ph.2017.7406

    Article  CAS  PubMed  Google Scholar 

  61. Li Y, Li P, Wang N (2021) Effect of let-7c on the PI3K/Akt/FoxO signaling pathway in hepatocellular carcinoma. Oncol Lett 21:96. https://doi.org/10.3892/ol.2020.12357

    Article  CAS  PubMed  Google Scholar 

  62. Shan P, Yang F, Qi H, Hu Y, Zhu S, Sun Z, Zhang Z, Wang C, Hou C, Yu J et al (2021) Alteration of MDM2 by the small molecule YF438 exerts antitumor effects in triple-negative breast cancer. Cancer Res 81:4027–4040. https://doi.org/10.1158/0008-5472.CAN-20-0922

    Article  CAS  PubMed  Google Scholar 

  63. Jayasuriya R, Ganesan K, Xu B, Ramkumar KM (2022) Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 145:112421. https://doi.org/10.1016/j.biopha.2021.112421

    Article  CAS  PubMed  Google Scholar 

  64. Marin W, Marin D, Ao X, Liu Y (2021) Mitochondria as a therapeutic target for cardiac ischemiareperfusion injury (Review). Int J Mol Med 47:485–499. https://doi.org/10.3892/ijmm.2020.4823

    Article  CAS  PubMed  Google Scholar 

  65. Lun P, Ji T, Wan DH, Liu X, Chen XD, Yu S, Sun P (2022) HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson’s disease cell and mouse models. Neural Regen Res 17:887–897. https://doi.org/10.4103/1673-5374.322475

    Article  PubMed  Google Scholar 

  66. Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y (2021) Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 236:5162–5175. https://doi.org/10.1002/jcp.30222

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, Li X, Wang Z (2021) lncRNA MEG3 inhibits pituitary tumor development by participating in cell proliferation, apoptosis and EMT processes. Oncol Rep 45:40. https://doi.org/10.3892/or.2021.7991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang Z, Zeng X, Li J, Qiu S, Zhao H, Wang Z, Zheng Y (2021) LncRNA HOXC-AS1 promotes nasopharyngeal carcinoma (NPC) progression by sponging miR-4651 and subsequently upregulating FOXO6. J Pharmacol Sci 147:284–293. https://doi.org/10.1016/j.jphs.2021.08.002

    Article  CAS  PubMed  Google Scholar 

  69. Wen ZJ, Xin H, Wang YC, Liu HW, Gao YY, Zhang YF (2021) Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids 26:828–848. https://doi.org/10.1016/j.omtn.2021.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K (2021) Extrachromosomal circular DNAs: origin, formation and emerging function in Cancer. Int J Biol Sci 17:1010–1025. https://doi.org/10.7150/ijbs.54614

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Jia DD, Zhang YF, Cheng MD, Zhu WX, Li PF, Zhang YF (2021) The emerging function and clinical significance of circRNAs in thyroid cancer and autoimmune thyroid diseases. Int J Biol Sci 17:1731–1741. https://doi.org/10.7150/ijbs.55381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu Y, Ao X, Yu W, Zhang Y, Wang J (2022) Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acids 27:50–72. https://doi.org/10.1016/j.omtn.2021.11.013

    Article  CAS  PubMed  Google Scholar 

  73. Yu XY, Ma CQ, Sheng YH (2022) circRNA CRIM1 regulates the migration and invasion of bladder cancer by targeting miR182/Foxo3a axis. Clin Transl Oncol 24:1195–1203. https://doi.org/10.1007/s12094-021-02768-6

    Article  CAS  PubMed  Google Scholar 

  74. Bian L, Zhi X, Ma L, Zhang J, Chen P, Sun S, Li J, Sun Y, Qin J (2018) Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p / FOXO4 axis. Biochem Biophys Res Commun 505:346–352. https://doi.org/10.1016/j.bbrc.2018.09.073

    Article  CAS  PubMed  Google Scholar 

  75. Lu C, Rong D, Hui B, He X, Jiang W, Xu Y, Cao H, Xu Z, Tang W (2021) CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma. Cell Death Discov 7:321. https://doi.org/10.1038/s41420-021-00710-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ao X, Ding W, Zhang Y, Ding D, Liu Y (2020) TCF21: a critical transcription factor in health and cancer. J Mol Med (Berl) 98:1055–1068. https://doi.org/10.1007/s00109-020-01934-7

    Article  CAS  Google Scholar 

  77. Hu W, Yang Z, Yang W, Han M, Xu B, Yu Z, Shen M, Yang Y (2019) Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: a panoramic view. Prog Neurobiol 181:101645. https://doi.org/10.1016/j.pneurobio.2019.101645

    Article  CAS  PubMed  Google Scholar 

  78. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967. https://doi.org/10.1074/jbc.M302804200

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Hernandez L, Garcia-Ortega MB, Ruiz-Alcala G, Carrillo E, Marchal JA, Garcia MA (2021) The p38 MAPK components and modulators as biomarkers and molecular targets in cancer. Int J Mol Sci 23:370. https://doi.org/10.3390/ijms23010370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148. https://doi.org/10.1038/ncb1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y et al (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19:519–527. https://doi.org/10.1016/j.cellsig.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  82. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812. https://doi.org/10.1038/sj.emboj.7600476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu P, Kao TP, Huang H (2008) CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene 27:4733–4744. https://doi.org/10.1038/onc.2008.104

    Article  CAS  PubMed  Google Scholar 

  84. Huang H, Regan KM, Lou Z, Chen J, Tindall DJ (2006) CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314:294–297. https://doi.org/10.1126/science.1130512

    Article  CAS  PubMed  Google Scholar 

  85. Dall’Acqua A, Sonego M, Pellizzari I, Pellarin I, Canzonieri V, D’Andrea S, Benevol S, Sorio R, Giorda G, Califano D, et al (2017) CDK6 protects epithelial ovarian cancer from platinum-induced death via FOXO3 regulation. EMBO Mol Med 9:1415–1433. https://doi.org/10.15252/emmm.201607012

    Article  CAS  Google Scholar 

  86. Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, Candau R (2012) AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem 113:695–710. https://doi.org/10.1002/jcb.23399

    Article  CAS  PubMed  Google Scholar 

  87. Kim YH, Choi J, Yang MJ, Hong SP, Lee CK, Kubota Y, Lim DS, Koh GY (2019) A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun 10:838. https://doi.org/10.1038/s41467-019-08773-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Finnberg N, El-Deiry WS (2004) Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther 3:614–616. https://doi.org/10.4161/cbt.3.7.1057

    Article  CAS  PubMed  Google Scholar 

  89. Zhang YF, Shan C, Wang Y, Qian LL, Jia DD, Zhang YF, Hao XD, Xu HM (2020) Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S. Sci Total Environ 723:137952. https://doi.org/10.1016/j.scitotenv.2020.137952

    Article  CAS  PubMed  Google Scholar 

  90. Di Blasi R, Blyuss O, Timms JF, Conole D, Ceroni F, Whitwell HJ (2021) Non-histone protein methylation: biological significance and bioengineering potential. ACS Chem Biol 16:238–250. https://doi.org/10.1021/acschembio.0c00771

    Article  CAS  PubMed  Google Scholar 

  91. Dai X, Ren T, Zhang Y, Nan N (2021) Methylation multiplicity and its clinical values in cancer. Expert Rev Mol Med 23:e2. https://doi.org/10.1017/erm.2021.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chae YC, Kim JY, Park JW, Kim KB, Oh H, Lee KH, Seo SB (2019) FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res 47:1692–1705. https://doi.org/10.1093/nar/gky1230

    Article  CAS  PubMed  Google Scholar 

  93. Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32:221–231. https://doi.org/10.1016/j.molcel.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  94. Choi S, Jeong HJ, Kim H, Choi D, Cho SC, Seong JK, Koo SH, Kang JS (2019) Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy 15:1069–1081. https://doi.org/10.1080/15548627.2019.1569931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X, Espejo A, Bedford MT, Gozani O, Gygi SP et al (2012) Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 4:462–479. https://doi.org/10.18632/aging.100471

    Article  CAS  Google Scholar 

  96. Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M (2022) Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 403:151–194. https://doi.org/10.1515/hsz-2021-0139

    Article  CAS  PubMed  Google Scholar 

  97. Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 102:11278–11283. https://doi.org/10.1073/pnas.0502738102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qiang L, Banks AS, Accili D (2010) Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem 285:27396–27401. https://doi.org/10.1074/jbc.M110.140228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dansen TB, Smits LM, van Triest MH, de Keizer PL, van Leenen D, Koerkamp MG, Szypowska A, Meppelink A, Brenkman AB, Yodoi J et al (2009) Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 5:664–672. https://doi.org/10.1038/nchembio.194

  100. Liu H (2021) The roles of histone deacetylases in kidney development and disease. Clin Exp Nephrol 25:215–223. https://doi.org/10.1007/s10157-020-01995-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127:1441–1453. https://doi.org/10.1242/jcs.136390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621. https://doi.org/10.1016/j.cell.2011.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  104. Ma ZX, Xu H, Xiang W, Qi J, Xu YY, Zhao ZG (2021) Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9. Eur Rev Med Pharmacol Sci 25:626–635. https://doi.org/10.26355/eurrev_202101_24621

    Article  PubMed  Google Scholar 

  105. Aimjongjun S, Mahmud Z, Jiramongkol Y, Alasiri G, Yao S, Yague E, Janvilisri T, Lam EW (2019) Lapatinib sensitivity in nasopharyngeal carcinoma is modulated by SIRT2-mediated FOXO3 deacetylation. BMC Cancer 19:1106. https://doi.org/10.1186/s12885-019-6308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM et al (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52. https://doi.org/10.1016/j.ccr.2009.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J (2022) Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 292:120322. https://doi.org/10.1016/j.lfs.2022.120322

    Article  CAS  PubMed  Google Scholar 

  108. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102:1649–1654. https://doi.org/10.1073/pnas.0406789102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu B, Wang J, Ren Z (2021) SKP2-promoted ubiquitination of FOXO3 promotes the development of asthma. J Immunol 206:2366–2375. https://doi.org/10.4049/jimmunol.2000387

    Article  CAS  PubMed  Google Scholar 

  110. Kato S, Ding J, Pisck E, Jhala US, Du K (2008) COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J Biol Chem 283:35464–35473. https://doi.org/10.1074/jbc.M801011200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Choi HH, Zou S, Wu JL, Wang H, Phan L, Li K, Zhang P, Chen D, Liu Q, Qin B et al (2020) EGF relays signals to COP1 and facilitates FOXO4 degradation to promote tumorigenesis. Adv Sci (Weinh) 7:2000681. https://doi.org/10.1002/advs.202000681

    Article  CAS  PubMed Central  Google Scholar 

  112. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y et al (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284:13987–14000. https://doi.org/10.1074/jbc.M901758200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG, Burgering BM (2008) Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 3:e2819. https://doi.org/10.1371/journal.pone.0002819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD (2021) Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 117:1033–1045. https://doi.org/10.1093/cvr/cvaa252

    Article  CAS  PubMed  Google Scholar 

  115. Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T (2008) O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 582:829–834. https://doi.org/10.1016/j.febslet.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  116. Shin H, Cha HJ, Na K, Lee MJ, Cho JY, Kim CY, Kim EK, Kang CM, Kim H, Paik YK (2018) O-GlcNAcylation of the tumor suppressor FOXO3 triggers aberrant cancer cell growth. Cancer Res 78:1214–1224. https://doi.org/10.1158/0008-5472.CAN-17-3512

    Article  CAS  PubMed  Google Scholar 

  117. Ho SR, Wang K, Whisenhunt TR, Huang P, Zhu X, Kudlow JE, Paterson AJ (2010) O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress. FEBS Lett 584:49–54. https://doi.org/10.1016/j.febslet.2009.11.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu W, Song YY, Wang JY, Xiao H, Zhang Y, Luo B (2020) Dysregulation of FOXO transcription factors in Epstein-Barr virus-associated gastric carcinoma. Virus Res 276:197808. https://doi.org/10.1016/j.virusres.2019.197808

    Article  CAS  PubMed  Google Scholar 

  119. Kim SY, Ko YS, Park J, Choi Y, Park JW, Kim Y, Pyo JS, Yoo YB, Lee JS, Lee BL (2016) Forkhead transcription factor FOXO1 inhibits angiogenesis in gastric cancer in relation to SIRT1. Cancer Res Treat 48:345–354. https://doi.org/10.4143/crt.2014.247

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Z, Hou WB, Zhang C, Tan YE, Zhang DD, An W, Pan SW, Wu WD, Chen QC, Xu HM (2020) A research of STEAP1 regulated gastric cancer cell proliferation, migration and invasion in vitro and in vivos. J Cell Mol Med 24:14217–14230. https://doi.org/10.1111/jcmm.16038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ding J, Li Q, He S, Xie J, Liang X, Wu T, Li D (2020) Luteolin-loading of Her-2-poly (lactic-co-glycolic acid) nanoparticles and proliferative inhibition of gastric cancer cells via targeted regulation of forkhead box protein O1. J Cancer Res Ther 16:263–268. https://doi.org/10.4103/jcrt.JCRT_438_18

    Article  CAS  PubMed  Google Scholar 

  122. Chen T, Wang Y, Yang Y, Yu K, Cao X, Su F, Xu H, Peng Y, Hu Y, Qian F et al (2019) Gramicidin inhibits human gastric cancer cell proliferation, cell cycle and induced apoptosis. Biol Res 52:57. https://doi.org/10.1186/s40659-019-0264-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Choi Y, Park J, Ko YS, Kim Y, Pyo JS, Jang BG, Kim MA, Lee JS, Chang MS, Lee BL (2017) FOXO1 reduces tumorsphere formation capacity and has crosstalk with LGR5 signaling in gastric cancer cells. Biochem Biophys Res Commun 493:1349–1355. https://doi.org/10.1016/j.bbrc.2017.09.163

    Article  CAS  PubMed  Google Scholar 

  124. Park J, Choi Y, Ko YS, Kim Y, Pyo JS, Jang BG, Kim MA, Lee JS, Chang MS, Park JW et al (2018) FOXO1 suppression is a determinant of acquired lapatinib-resistance in HER2-positive gastric cancer cells through MET upregulation. Cancer Res Treat 50:239–254. https://doi.org/10.4143/crt.2016.580

    Article  CAS  PubMed  Google Scholar 

  125. Choi Y, Park J, Choi Y, Ko YS, Yu DA, Kim Y, Pyo JS, Jang BG, Kim MA, Kim WH et al (2016) c-Jun N-terminal kinase activation has a prognostic implication and is negatively associated with FOXO1 activation in gastric cancer. BMC Gastroenterol 16:59. https://doi.org/10.1186/s12876-016-0473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Altan B, Yokobori T, Ide M, Mochiki E, Toyomasu Y, Kogure N, Kimura A, Hara K, Bai T, Bao P et al (2016) Nuclear PRMT1 expression is associated with poor prognosis and chemosensitivity in gastric cancer patients. Gastric Cancer 19:789–797. https://doi.org/10.1007/s10120-015-0551-7

    Article  CAS  PubMed  Google Scholar 

  127. Ko YS, Cho SJ, Park J, Kim Y, Choi YJ, Pyo JS, Jang BG, Park JW, Kim WH, Lee BL (2015) Loss of FOXO1 promotes gastric tumour growth and metastasis through upregulation of human epidermal growth factor receptor 2/neu expression. Br J Cancer 113:1186–1196. https://doi.org/10.1038/bjc.2015.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu DA, Yoon J, Ko YS, Park J, Kim SY, Kim MA, Kim JH, Jung J, Cheon Y, Lee HS et al (2014) Forkhead transcription factor FOXO1 inhibits nuclear factor-kappaB in gastric cancer. APMIS 122:848–855. https://doi.org/10.1111/apm.12247

    Article  CAS  PubMed  Google Scholar 

  129. Park J, Ko YS, Yoon J, Kim MA, Park JW, Kim WH, Choi Y, Kim JH, Cheon Y, Lee BL (2014) The forkhead transcription factor FOXO1 mediates cisplatin resistance in gastric cancer cells by activating phosphoinositide 3-kinase/Akt pathway. Gastric Cancer 17:423–430. https://doi.org/10.1007/s10120-013-0314-2

    Article  CAS  PubMed  Google Scholar 

  130. Kim SY, Yoon J, Ko YS, Chang MS, Park JW, Lee HE, Kim MA, Kim JH, Kim WH, Lee BL (2011) Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules. BMC Cancer 11:264. https://doi.org/10.1186/1471-2407-11-264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim JH, Kim MK, Lee HE, Cho SJ, Cho YJ, Lee BL, Lee HS, Nam SY, Lee JS, Kim WH (2007) Constitutive phosphorylation of the FOXO1A transcription factor as a prognostic variable in gastric cancer. Mod Pathol 20:835–842. https://doi.org/10.1038/modpathol.3800789

    Article  CAS  PubMed  Google Scholar 

  132. Ding D, Ao X, Li M, Miao S, Liu Y, Lin Z, Wang M, He Y, Wang J (2021) FOXO3a-dependent Parkin regulates the development of gastric cancer by targeting ATP-binding cassette transporter E1. J Cell Physiol 236:2740–2755. https://doi.org/10.1002/jcp.30040

    Article  CAS  PubMed  Google Scholar 

  133. An Y, Wang B, Wang X, Dong G, Jia J, Yang Q (2020) SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death Dis 11:115. https://doi.org/10.1038/s41419-020-2308-4

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pang X, Zhou Z, Yu Z, Han L, Lin Z, Ao X, Liu C, He Y, Ponnusamy M, Li P et al (2019) Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biol 16:233–248. https://doi.org/10.1080/15476286.2019.1565665

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang L, Liu L, Zhan S, Chen L, Wang Y, Zhang Y, Du J, Wu Y, Gu L (2018) Arsenic trioxide suppressed migration and angiogenesis by targeting FOXO3a in gastric cancer cells. Int J Mol Sci 19:3739. https://doi.org/10.3390/ijms19123739

    Article  CAS  PubMed Central  Google Scholar 

  136. Lin F, Yang J, Muhammad U, Sun J, Huang Z, Li W, Lv F, Lu Z (2019) Bacillomycin D-C16 triggers apoptosis of gastric cancer cells through the PI3K/Akt and FoxO3a signaling pathways. Anticancer Drugs 30:46–55. https://doi.org/10.1097/CAD.0000000000000688

    Article  CAS  PubMed  Google Scholar 

  137. Gao Y, Qi W, Sun L, Lv J, Qiu W, Liu S (2018) FOXO3 inhibits human gastric adenocarcinoma (AGS) cell growth by promoting autophagy in an acidic microenvironment. Cell Physiol Biochem 49:335–348. https://doi.org/10.1159/000492884

    Article  CAS  PubMed  Google Scholar 

  138. Yu S, Yu Y, Zhang W, Yuan W, Zhao N, Li Q, Cui Y, Wang Y, Li W, Sun Y et al (2016) FOXO3a promotes gastric cancer cell migration and invasion through the induction of cathepsin L. Oncotarget 7:34773–34784. https://doi.org/10.18632/oncotarget.8977

    Article  PubMed  PubMed Central  Google Scholar 

  139. Park SH, Jang KY, Kim MJ, Yoon S, Jo Y, Kwon SM, Kim KM, Kwon KS, Kim CY, Woo HG (2015) Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications. Oncotarget 6:44819–44831. https://doi.org/10.18632/oncotarget.6264

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yu S, Yu Y, Sun Y, Wang X, Luo R, Zhao N, Zhang W, Li Q, Cui Y, Wang Y et al (2015) Activation of FOXO3a suggests good prognosis of patients with radically resected gastric cancer. Int J Clin Exp Pathol 8:2963–2970

    PubMed  PubMed Central  Google Scholar 

  141. Xiong H, Wang J, Guan H, Wu J, Xu R, Wang M, Rong X, Huang K, Huang J, Liao Q et al (2014) SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling. Oncol Rep 32:1369–1373. https://doi.org/10.3892/or.2014.3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang XB, Zhao JJ, Huang CY, Wang QJ, Pan K, Wang DD, Pan QZ, Jiang SS, Lv L, Gao X et al (2013) Decreased expression of the FOXO3a gene is associated with poor prognosis in primary gastric adenocarcinoma patients. PLoS One 8:e78158. https://doi.org/10.1371/journal.pone.0078158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y (2006) RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281:5267–5276. https://doi.org/10.1074/jbc.M512151200

    Article  CAS  PubMed  Google Scholar 

  144. He Y, Wang C, Zhang X, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J et al (2020) Sustained exposure to Helicobacter pylori lysate inhibits apoptosis and autophagy of gastric epithelial cells. Front Oncol 10:581364. https://doi.org/10.3389/fonc.2020.581364

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lu W, Ni Z, Jiang S, Tong M, Zhang J, Zhao J, Feng C, Jia Q, Wang J, Yao T et al (2021) Resveratrol inhibits bile acid-induced gastric intestinal metaplasia via the PI3K/AKT/p-FoxO4 signalling pathway. Phytother Res 35:1495–1507. https://doi.org/10.1002/ptr.6915

    Article  CAS  PubMed  Google Scholar 

  146. Li J, Jiang Z, Han F, Liu S, Yuan X, Tong J (2016) FOXO4 and FOXD3 are predictive of prognosis in gastric carcinoma patients. Oncotarget 7:25585–25592. https://doi.org/10.18632/oncotarget.8339

    Article  PubMed  PubMed Central  Google Scholar 

  147. Su L, Liu X, Chai N, Lv L, Wang R, Li X, Nie Y, Shi Y, Fan D (2014) The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer. BMC Cancer 14:378. https://doi.org/10.1186/1471-2407-14-378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang JH, Tang HS, Li XS, Zhang XL, Yang XZ, Zeng LS, Ruan Q, Huang YH, Liu GJ, Wang J et al (2017) Elevated FOXO6 expression correlates with progression and prognosis in gastric cancer. Oncotarget 8:31682–31691. https://doi.org/10.18632/oncotarget.15920

    Article  PubMed  PubMed Central  Google Scholar 

  149. Qinyu L, Long C, Zhen-dong D, Min-min S, Wei-ze W, Wei-ping Y, Cheng-hong P (2013) FOXO6 promotes gastric cancer cell tumorigenicity via upregulation of C-myc. FEBS Lett 587:2105–2111. https://doi.org/10.1016/j.febslet.2013.05.027

    Article  CAS  PubMed  Google Scholar 

  150. Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D (2021) The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 898:173983. https://doi.org/10.1016/j.ejphar.2021.173983

    Article  CAS  PubMed  Google Scholar 

  151. Yu X, Yu S, Fan Y (2020) Progress on treatment of MET signaling pathway in non-small cell lung cancer. Int J Clin Oncol 25:1450–1458. https://doi.org/10.1007/s10147-020-01702-0

    Article  PubMed  Google Scholar 

  152. Lee U, Cho EY, Jho EH (2022) Regulation of Hippo signaling by metabolic pathways in cancer. Biochim Biophys Acta Mol Cell Res 1869:119201. https://doi.org/10.1016/j.bbamcr.2021.119201

    Article  CAS  PubMed  Google Scholar 

  153. Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K (2021) Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: the link between signaling pathways and cancer. DNA Repair (Amst) 102:103103. https://doi.org/10.1016/j.dnarep.2021.103103

    Article  CAS  Google Scholar 

  154. Patriarca C, Pini GM, Conti G (2020) Invasion and metastasis: a historical perspective. Pathologica 112:229–233. https://doi.org/10.32074/1591-951X-111

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sengez B, Carr BI, Alotaibi H (2022) EMT and inflammation: crossroads in HCC. J Gastrointest Cancer. https://doi.org/10.1007/s12029-021-00801-z

  156. Zhao Y, Zhang J, Yang W, Yang Z, Zhou K (2021) MicroRNA-552 accelerates the progression of gastric cancer by targeting FOXO1 and regulating PI3K/AKT pathway. J Oncol 2021:9966744. https://doi.org/10.1155/2021/9966744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hisano Y, Hla T (2019) Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther 193:91–98. https://doi.org/10.1016/j.pharmthera.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  158. Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T (2020) Exosomes in angiogenesis and anti-angiogenic therapy in cancers. Int J Mol Sci 21:5840. https://doi.org/10.3390/ijms21165840

    Article  CAS  PubMed Central  Google Scholar 

  159. Forma A, Tyczynska M, Kedzierawski P, Gietka K, Sitarz M (2021) Gastric carcinogenesis: a comprehensive review of the angiogenic pathways. Clin J Gastroenterol 14:14–25. https://doi.org/10.1007/s12328-020-01295-1

    Article  PubMed  Google Scholar 

  160. Liu X, Wang Q, Song S, Feng M, Wang X, Li L, Liu Y, Shi C (2021) Epithelial splicing regulatory protein 1 is overexpressed in breast cancer and predicts poor prognosis for breast cancer patients. Med Sci Monit 27:e931102. https://doi.org/10.12659/MSM.931102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Deng YW, Shu YG, Sun SL (2022) miR-376a inhibits glioma proliferation and angiogenesis by regulating YAP1/VEGF signalling via targeting of SIRT1. Transl Oncol 15:101270. https://doi.org/10.1016/j.tranon.2021.101270

    Article  CAS  PubMed  Google Scholar 

  162. Liu Y, Ao X, Wang Y, Li X, Wang J (2022) Long non-coding RNA in gastric cancer: mechanisms and clinical implications for drug resistance. Frontiers in Oncology 12:841411. https://doi.org/10.3389/fonc.2022.841411

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liu Y (2019) Targeting the non-canonical AKT-FOXO3a axis: a potential therapeutic strategy for oral squamous cell carcinoma. EBioMedicine 49:6–8. https://doi.org/10.1016/j.ebiom.2019.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liu Y, Ao X, Zhou X, Du C, Kuang S (2022) The regulation of PBXs and their emerging role in cancer. J Cell Mol Med. DOI https://doi.org/10.1111/jcmm.17196

  165. Zou J, Wang E (2019) Cancer biomarker discovery for precision medicine: new progress. Curr Med Chem 26:7655–7671. https://doi.org/10.2174/0929867325666180718164712

    Article  CAS  PubMed  Google Scholar 

  166. Ao X, Ding W, Ge H, Zhang Y, Ding D, Liu Y (2020) PBX1 is a valuable prognostic biomarker for patients with breast cancer. Exp Ther Med 20:385–394. https://doi.org/10.3892/etm.2020.8705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Calissi G, Lam EW, Link W (2021) Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 20:21–38. https://doi.org/10.1038/s41573-020-0088-2

    Article  CAS  PubMed  Google Scholar 

  168. Salcher S, Spoden G, Hagenbuchner J, Fuhrer S, Kaserer T, Tollinger M, Huber-Cantonati P, Gruber T, Schuster D, Gust R et al (2020) A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 39:1080–1097. https://doi.org/10.1038/s41388-019-1044-7

    Article  CAS  PubMed  Google Scholar 

  169. Nagashima T, Shigematsu N, Maruki R, Urano Y, Tanaka H, Shimaya A, Shimokawa T, Shibasaki M (2010) Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol Pharmacol 78:961–970. https://doi.org/10.1124/mol.110.065714

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

All authors are supported by Qingdao Medical College, Qingdao University. This work was supported by the National Natural Science Foundation of China (81802822) and the China Postdoctoral Science Foundation (2018M642607).

Author information

Authors and Affiliations

Authors

Contributions

Ying Liu: writing–conceptualization, original draft preparation, writing–review and editing. Xiang Ao: data curation, funding acquisition. Yi Jia: data curation. Xiaoge Li: data curation. Yu Wang: data curation. Jianxun Wang: review and editing.

Corresponding author

Correspondence to Ying Liu.

Ethics declarations

Ethics and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ao, X., Jia, Y. et al. The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med 100, 997–1015 (2022). https://doi.org/10.1007/s00109-022-02219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02219-x

Keywords

Navigation