Skip to main content
Log in

Expedition Glykokalyx

Ein neu entdecktes „Great Barrier Reef“

Expedition glycocalyx

A newly discovered „Great Barrier Reef“

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Jedes gesunde Gefäß wird luminal von einer endothelialen Glykokalyx ausgekleidet, die mit dem Blutstrom interagiert und Filterfunktionen an der Gefäßwand wahrnimmt. Obwohl diese Struktur bereits vor fast 70 Jahren entdeckt wurde, blieb ihre physiologische Bedeutung lange Zeit unterschätzt. Neueren Erkenntnissen zufolge ist die Glykokalyx, neben den Endothelzellen selbst, ein wesentlicher Bestandteil der vaskulären Barriere. Die unterschiedlichen kolloidosmotischen Gradienten inner- und unterhalb dieser Struktur haben mittlerweile zu einer Modifizierung der Starling-Gleichung geführt. Das Interstitium weist in vielen Abschnitten eine Proteinkonzentration auf, die mit derjenigen des Plasmas vergleichbar ist. Der einwärts gerichtete Gradient, der Wasser und Protein im Gefäßsystem zurückhält, entsteht unterhalb der Glykokalyx durch selektive Proteinfilterung über diese Struktur hinweg. Die endotheliale Glykokalyx besitzt damit als weitere kompetente vaskuläre Permeabilitätsbarriere eine Schlüsselfunktion nicht nur für perioperative Flüssigkeits- und Proteinverschiebungen ins Gewebe, sondern scheint darüber hinaus eine bedeutende Rolle in der Pathophysiologie von Diabetes, Arteriosklerose, Sepsis und Ischämie/Reperfusion (I/R) und den damit verbunden vaskulären Dysfunktionen zu spielen. Die fragile Glykokalyx kann durch chirurgische Eingriffe, Trauma, Ischämie/Reperfusion, Sepsis oder Entzündungsmediatoren wie Tumor-Nekrose-Faktor- (TNF-)α zerstört werden; dies kann zu Leukozytenadhäsion, Thrombozytenaggregation und Ödembildung führen. Neuere Studien konnten zeigen, dass eine Protektion dieser Schicht nicht nur einen Schutz der Gefäßbarriere darstellt, sondern ein wichtiger Bestandteil einer rationalen perioperativen Flüssigkeitstherapie sein kann.

Abstract

Healthy vascular endothelium is luminally coated by an endothelial glycocalyx, which interacts with the bloodstream and assumes a filter function on the vascular wall. Although this structure was discovered nearly 70 years ago, its physiological importance has been underestimated for a long time. Recent findings indicate that the glycocalyx is, in addition to the endothelial cells themselves, a main constituent part of the vascular barrier. The existence of different colloid osmotic gradients within and beneath this structure has now led to a modification of the Starling equation. In many vascular beds the interstitial space features a protein concentration similar to that of the plasma. The inwardly directed gradient, which retains water and proteins in the vascular system, is generated beneath the glycocalyx by selective protein filtration over this structure. The endothelial glycocalyx, as an additional competent vascular permeability barrier has, therefore, not only a key role for perioperative fluid and protein shifts into the interstitial space, but it seems to be intimately involved in the pathophysiology of diabetes, arteriosclerosis, sepsis and ischemia/reperfusion, especially with respect to associated vascular dysfunctions. The fragile glycocalyx can be destroyed in the course of surgery, trauma, ischemia/reperfusion and sepsis and by inflammatory mediators such as TNF-α, causing leukocyte adhesion, platelet aggregation and edema formation. Recent studies have shown that protecting this structure not only maintains the vascular barrier, but constitutes an important component of a rational perioperative fluid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445: 473–486

    PubMed  CAS  Google Scholar 

  2. Adamson RH, Lenz JF, Zhang X et al. (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557: 889–907

    Article  PubMed  CAS  Google Scholar 

  3. Algenstaedt P, Schaefer C, Biermann T et al. (2003) Microvascular alterations in diabetic mice correlate with level of hyperglycemia. Diabetes 52: 542–549

    Article  PubMed  CAS  Google Scholar 

  4. Barker AL, Konopatskaya O, Neal CR et al. (2004) Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy. Phys Chem Chem Phys 6: 1006–1011

    Article  CAS  Google Scholar 

  5. Bernfield M, Gotte M, Park PW et al. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729–777

    Article  PubMed  CAS  Google Scholar 

  6. Brandstrup B, Tonnesen H, Beier-Holgersen R et al. (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238: 641–648

    Article  PubMed  Google Scholar 

  7. Bruegger D, Jacob M, Rehm M et al. (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289: H1993–H1999

    Article  PubMed  CAS  Google Scholar 

  8. Bruegger D, Rehm M, Jacob M et al. (2008) Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care 12: R73

    Article  PubMed  Google Scholar 

  9. Chappel O, Hofmann-Kiefer K, Jacob M et al. (2008) TNF-α induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol (in press)

  10. Chappell D, Jacob M, Hofmann-Kiefer K et al. (2007) Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 107: 776–784

    PubMed  CAS  Google Scholar 

  11. Chappell D, Jacob M, Hofmann-Kiefer K et al. (2008) A rational approach to perioperative fluid therapy. Anesthesiology (in press)

  12. Chappell D, Jacob M, Rehm M et al. (2008) Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem 389: 79–82

    Article  PubMed  CAS  Google Scholar 

  13. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23: 1541–1547

    Article  PubMed  CAS  Google Scholar 

  14. Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res 20: 96–99

    Article  PubMed  CAS  Google Scholar 

  15. Danielli JF (1940) Capillary permeability and oedema in the perfused frog. J Physiol 98: 109–129

    PubMed  CAS  Google Scholar 

  16. Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol 258: H647–H654

    PubMed  CAS  Google Scholar 

  17. Edovitsky E, Elkin M, Zcharia E et al. (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis and metastasis. J Natl Cancer Inst 96: 1219–1230

    Article  PubMed  CAS  Google Scholar 

  18. Fahraeus R, Lindquist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96: 562–568

    CAS  Google Scholar 

  19. Granger DN (1999) Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation 6: 167–178

    Article  PubMed  CAS  Google Scholar 

  20. Hansson GK (2005) Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 352: 1685–1695

    Article  PubMed  CAS  Google Scholar 

  21. Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 277: H508–H514

    PubMed  CAS  Google Scholar 

  22. Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279: H2815–H2823

    PubMed  CAS  Google Scholar 

  23. Henry CB, Duran WN, DeFouw DO (1997) Permselectivity of angiogenic microvessels following alteration of the endothelial fiber matrix by oligosaccharides. Microvasc Res 53: 150–155

    Article  PubMed  CAS  Google Scholar 

  24. Holte K, Kehlet H (2006) Fluid therapy and surgical outcomes in elective surgery: a need for reassessment in fast-track surgery. J Am Coll Surg 202: 971–989

    Article  PubMed  Google Scholar 

  25. Hu X, Adamson RH, Liu B et al. (2000) Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol 279: H1724–H1736

    PubMed  CAS  Google Scholar 

  26. Hu X, Weinbaum S (1999) A new view of Starling’s hypothesis at the microstructural level. Microvasc Res 58: 281–304

    Article  PubMed  CAS  Google Scholar 

  27. Huxley VH, Curry FE (1985) Albumin modulation of capillary permeability: test of an adsorption mechanism. Am J Physiol 248: H264–H273

    PubMed  CAS  Google Scholar 

  28. Jacob M, Bruegger D, Rehm M et al. (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73: 575–586

    Article  PubMed  CAS  Google Scholar 

  29. Jacob M, Bruegger D, Rehm M et al. (2006) Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 104: 1223–1231

    Article  PubMed  CAS  Google Scholar 

  30. Jacob M, Chappell D, Conzen P et al. (2008) Impact of the time window on plasma volume measurement with indocyanine green. Physiol Meas 29: 761–770

    Article  PubMed  CAS  Google Scholar 

  31. Jacob M, Chappell D, Conzen P et al. (2008) Blood volume is normal after preoperative overnight fasting. Acta Anaesthesiol Scand 52: 522–529

    Article  PubMed  CAS  Google Scholar 

  32. Jacob M, Chappell D, Hofmann-Kiefer K et al. (2007) Determinants of insensible fluid loss. Perspiration, protein shift and endothelial glycocalyx. Anaesthesist 56: 747–764

    Article  PubMed  CAS  Google Scholar 

  33. Jacob M, Chappell D, Rehm M (2007) Clinical update: perioperative fluid management. Lancet 369: 1984–1986

    Article  PubMed  Google Scholar 

  34. Jacob M, Conzen P, Finsterer U et al. (2007) Technical and physiological background of plasma volume measurement with indocyanine green – A clarification of misunderstandings. J Appl Physiol 102: 1235–1242

    Article  PubMed  CAS  Google Scholar 

  35. Jacob M, Rehm M, Orth V et al. (2003) Exact measurement of the volume effect of 6% hydoxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist 52: 896–904

    Article  PubMed  CAS  Google Scholar 

  36. Kamp-Jensen M, Olesen KL, Bach V et al. (1990) Changes in serum electrolyte and atrial natriuretic peptide concentrations, acid-base and haemodynamic status after rapid infusion of isotonic saline and Ringer lactate solution in healthy volunteers. Br J Anaesth 64: 606–610

    Article  PubMed  CAS  Google Scholar 

  37. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237: H481–H490

    PubMed  CAS  Google Scholar 

  38. Kurose I, Argenbright LW, Wolf R et al. (1997) Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol 272: H2976–H2982

    PubMed  CAS  Google Scholar 

  39. Lamke LO, Nilsson GE, Reithner HL (1977) Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand 143: 279–284

    PubMed  CAS  Google Scholar 

  40. Levick JR (2004) Revision of the Starling principle: new views of tissue fluid balance. J Physiol 557: 704

    Article  PubMed  CAS  Google Scholar 

  41. Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12: 5–15

    Article  PubMed  Google Scholar 

  42. Lobo DN, Bostock KA, Neal KR et al. (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359: 1812–1818

    Article  PubMed  Google Scholar 

  43. Lowell JA, Schifferdecker C, Driscoll DF et al. (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18: 728–733

    Article  PubMed  CAS  Google Scholar 

  44. Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25: 1773–1783

    PubMed  CAS  Google Scholar 

  45. Marechal X, Favory R, Joulin O et al. (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29: 572–576

    Article  PubMed  CAS  Google Scholar 

  46. Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286: H1672–H1680

    Article  PubMed  CAS  Google Scholar 

  47. Nathan DM, Lachin J, Cleary P et al. (2003) Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 348: 2294–2303

    Article  PubMed  Google Scholar 

  48. Nelson A, Berkestedt I, Schmidtchen A et al. (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock (in press)

  49. Nieuwdorp M, Meuwese MC, Mooij HL et al. (2008) Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis (in press)

  50. Nieuwdorp M, Meuwese MC, Vink H et al. (2005) The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 16: 507–511

    Article  PubMed  CAS  Google Scholar 

  51. Nieuwdorp M, Haeften TW van, Gouverneur MC et al. (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55: 480–486

    Article  PubMed  CAS  Google Scholar 

  52. Nisanevich V, Felsenstein I, Almogy G et al. (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103: 25–32

    Article  PubMed  Google Scholar 

  53. Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101: 513–518

    Article  PubMed  CAS  Google Scholar 

  54. Oliver MG, Specian RD, Perry MA, Granger DN (1991) Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion. Inflammation 15: 331–346

    Article  PubMed  CAS  Google Scholar 

  55. Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471: M99–M108

    PubMed  CAS  Google Scholar 

  56. Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102: 770–776

    Article  PubMed  CAS  Google Scholar 

  57. Pouta AM, Karinen J, Vuolteenaho OJ, Laatikainen TJ (1996) Effect of intravenous fluid preload on vasoactive peptide secretion during Caesarean section under spinal anaesthesia. Anaesthesia 51: 128–132

    Article  PubMed  CAS  Google Scholar 

  58. Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 1: 1–40

    Article  Google Scholar 

  59. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440: 653–666

    Article  PubMed  CAS  Google Scholar 

  60. Rehm M, Bruegger D, Christ F et al. (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116: 1896–1906

    Article  PubMed  CAS  Google Scholar 

  61. Rehm M, Haller M, Brechtelsbauer H et al. (1998) Extra protein loss not caused by surgical bleeding in patients with ovarian cancer. Acta Anaesthesiol Scand 42: 39–46

    PubMed  CAS  Google Scholar 

  62. Rehm M, Haller M, Orth V et al. (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95: 849–856

    Article  PubMed  CAS  Google Scholar 

  63. Rehm M, Orth V, Kreimeier U et al. (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92: 657–664

    Article  PubMed  CAS  Google Scholar 

  64. Rehm M, Orth VH, Kreimeier U et al. (2001) Changes in blood volume during acute normovolemic hemodilution with 5% albumin or 6% hydroxyethylstarch and intraoperative retransfusion. Anaesthesist 50: 569–579

    Article  PubMed  CAS  Google Scholar 

  65. Rehm M, Zahler S, Lotsch M et al. (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 100: 1211–1223

    Article  PubMed  CAS  Google Scholar 

  66. Reitsma S, Slaaf DW, Vink H et al. (2007) The endothelial glycocalyx: composition, functions and visualization. Pflugers Arch 454: 345–359

    Article  PubMed  CAS  Google Scholar 

  67. Retnakaran R, Zinman B (2008) Type 1 diabetes, hyperglycaemia and the heart. Lancet 371: 1790–1799

    Article  PubMed  CAS  Google Scholar 

  68. Ross R (1999) Atherosclerosis – An inflammatory disease. N Engl J Med 340: 115–126

    Article  PubMed  CAS  Google Scholar 

  69. Rubio-Gayosso I, Platts SH, Duling BR (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290: H2247–H2256

    Article  PubMed  CAS  Google Scholar 

  70. Schneeberger EE, Hamelin M (1984) Interaction of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol 247: H206–H217

    PubMed  CAS  Google Scholar 

  71. Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 19: 572–584

    Article  PubMed  Google Scholar 

  72. Shafat I, Zcharia E, Nisman B et al. (2006) An ELISA method for the detection and quantification of human heparanase. Biochem Biophys Res Commun 341: 958–963

    Article  PubMed  CAS  Google Scholar 

  73. Starling E (1896) On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 19: 312–326

    Google Scholar 

  74. Berg BM van den, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290: H915–H920

    Article  PubMed  CAS  Google Scholar 

  75. Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101: 1500–1502

    PubMed  CAS  Google Scholar 

  76. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes and leukocytes within mammalian capillaries. Circ Res 79: 581–589

    PubMed  CAS  Google Scholar 

  77. Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278: H285–H289

    PubMed  CAS  Google Scholar 

  78. Vlodavsky I, Goldshmidt O, Zcharia E et al. (2002) Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12: 121–129

    Article  PubMed  CAS  Google Scholar 

  79. Vlodavsky I, Ilan N, Nadir Y et al. (2007) Heparanase, heparin and the coagulation system in cancer progression. Thromb Res 120 [Suppl 2]: S112–S120

    Google Scholar 

  80. Vollmar B, Glasz J, Menger MD, Messmer K (1995) Leukocytes contribute to hepatic ischemia/reperfusion injury via intercellular adhesion molecule-1-mediated venular adherence. Surgery 117: 195–200

    Article  PubMed  CAS  Google Scholar 

  81. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chappell.

Additional information

Widmung

Unserem ehemaligen Chef, Herrn Prof. Dr. med. Dr. h.c. Klaus Peter, zum 70. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, D., Jacob, M., Becker, B. et al. Expedition Glykokalyx. Anaesthesist 57, 959–969 (2008). https://doi.org/10.1007/s00101-008-1445-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-008-1445-4

Schlüsselwörter

Keywords

Navigation