Skip to main content
Log in

Glycolysis-related gene induction and ATP reduction during fractionated irradiation

Markers for radiation responsiveness of human tumor xenografts

Glykolyse-assoziierte Geninduktion und ATP-Absenkung während fraktionierter Bestrahlung

Marker für das Therapieansprechen humaner Tumorxenografts

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background and purpose

Lactate was previously shown to be a prognostic but not a predictive pre-therapeutic marker for radiation response of tumor xenografts. We hypothesize that metabolic changes during fractionated irradiation may restrict the predictiveness of lactate regarding tumor radiosensitivity.

Materials and methods

Tumor xenografts were generated in nude mice by implanting 4 head and neck squamous cell carcinoma lines with different sensitivities to fractionated irradiation. Tumors were irradiated with up to 15 fractions of 2 Gy over a period of 3 weeks, and ATP and lactate levels were measured in vital tumor areas with induced metabolic bioluminescence imaging. Corresponding changes in mRNA expression of glycolysis-related genes were determined by quantitative RT-PCR.

Results

Lactate content decreased significantly in 3 out of 4 cell lines in the course of irradiation showing no correlation with cell line-specific radiosensitivity. Radiation-induced changes in ATP levels and glycolysis-related mRNA expression, however, only occurred in radiosensitive or intermediately radioresistant xenografts, whereas these parameters remained unchanged in radioresistant tumors.

Conclusion

Sensitivity-related differences in the transcriptional response of tumors to radiotherapy may be exploited in the clinic for better individualization of tumor treatment.

Zusammenfassung

Hintergrund und Fragestellung

Der Laktatgehalt humaner Tumorxenotransplantate ist ein prognostischer, aber kein prädiktiver prätherapeutischer Marker für das Therapieansprechen bei Bestrahlung. Diese Einschränkung hinsichtlich der Vorhersagekraft von Laktat könnte auf Veränderungen des Tumorstoffwechsels während einer Strahlentherapie beruhen.

Material und Methode

Grundlage der Studie waren Xenotransplantate von 4 humanen Plattenepithelkarzinomlinien des Kopf-Hals-Bereichs, die sich in ihrer Strahlenresistenz unterschieden. Die Tumoren wurden mit bis zu 15 Fraktionen mit 2 Gy über einen Zeitraum von 3 Wochen bestrahlt. Mittels induzierter metabolischer Biolumineszenzmessung wurden der ATP- und Laktatgehalt im vitalen Tumorgewebe bestimmt. Zusätzlich erfolgten Messungen der parallelen Veränderungen der mRNA-Expression glykolyserelevanter Gene mit quantitativer RT-PCR.

Ergebnisse

Unabhängig von der zelllinienspezifischen Strahlenresistenz nahm in 3 von 4 Linien der Laktatgehalt im Laufe der fraktionierten Bestrahlung ab. Strahleninduzierte Änderungen des ATP-Gehalts oder der mRNA-Expression waren hingegen mit der Strahlensensitivität der jeweiligen Tumore korreliert. Im Gegensatz zu strahlenresistenten Xenografts zeigten radiosensitive Tumore oder Xenotransplantate mit einer mittleren Strahlenresistenz signifikante Änderungen im ATP-Gehalt und auf transkriptioneller Ebene.

Schlussfolgerung

Die Ergebnisse weisen auf Unterschiede in der transkriptionellen Antwort der Tumoren nach Bestrahlung hin, die sich im klinischen Alltag für eine bessere personalisierte Tumorbehandlung nutzen lassen könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84:1014–1020

    Article  PubMed  CAS  Google Scholar 

  2. Bernier J, Horiot JC (2012) Altered-fractionated radiotherapy in locally advanced head and neck cancer. Curr Opin Oncol 24:223–228

    Article  PubMed  Google Scholar 

  3. Broggini-Tenzer A, Vuong V, Pruschy M (2011) Metabolism of tumors under treatment: mapping of metabolites with quantitative bioluminescence. Radiother Oncol 99:398–403

    Article  PubMed  CAS  Google Scholar 

  4. Eicheler W, Zips D, Dorfler A et al (2002) Splicing mutations in TP53 in human squamous cell carcinoma lines influence immunohistochemical detection. J Histochem Cytochem 50:197–204

    Article  PubMed  CAS  Google Scholar 

  5. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  6. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  PubMed  CAS  Google Scholar 

  7. Lee SC, Poptani H, Pickup S et al (2010) Early detection of radiation therapy response in non-Hodgkin’s lymphoma xenografts by in vivo 1H magnetic resonance spectroscopy and imaging. NMR Biomed 23:624–632

    Article  PubMed  CAS  Google Scholar 

  8. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    Article  PubMed  CAS  Google Scholar 

  9. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL et al (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12:939–948

    PubMed  CAS  Google Scholar 

  10. Sattler UG, Meyer SS, Quennet V et al (2010) Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 94:102–109

    Article  PubMed  CAS  Google Scholar 

  11. Thews O, Zywietz F, Lecher B, Vaupel P (1999) Quantitative changes of metabolic and bioenergetic parameters in experimental tumors during fractionated irradiation. Int J Radiat Oncol Biol Phys 45:1281–1288

    Article  PubMed  CAS  Google Scholar 

  12. Tozer G, Suit HD, Barlai-Kovach M et al (1987) Energy metabolism and blood perfusion in a mouse mammary adenocarcinoma during growth and following X irradiation. Radiat Res 109:275–293

    Article  PubMed  CAS  Google Scholar 

  13. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  14. Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267–274

    Article  PubMed  Google Scholar 

  15. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  16. Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310

    Article  PubMed  CAS  Google Scholar 

  17. Yaromina A, Kroeber T, Meinzer A et al (2011) Exploratory study of the prognostic value of microenvironmental parameters during fractionated irradiation in human squamous cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 80:1205–1213

    Article  PubMed  Google Scholar 

  18. Yaromina A, Zips D, Thames HD et al (2006) Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: the need for a multivariate approach in biomarker studies. Radiother Oncol 81:122–129

    Article  PubMed  CAS  Google Scholar 

  19. Ziebart T, Walenta S, Sattler U et al (2010) Metabolite-induced bioluminescence for tumor prediction: detection of metabolites in tumors of the head and neck region. HNO 58:31–34

    Article  PubMed  CAS  Google Scholar 

  20. Zips D, Boke S, Kroeber T et al (2011) Prognostic value of radiobiological hypoxia during fractionated irradiation for local tumor control. Strahlenther Onkol 187:306–310

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Goetze.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goetze, K., Meyer, S., Yaromina, A. et al. Glycolysis-related gene induction and ATP reduction during fractionated irradiation. Strahlenther Onkol 189, 782–788 (2013). https://doi.org/10.1007/s00066-013-0371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0371-9

Keywords

Schlüsselwörter

Navigation