Skip to main content
Log in

Demineralization adjacent to orthodontic brackets after application of conventional and self-etching primer systems

Demineralisation des Bracketumfeldes nach Anwendung konventioneller und selbst konditionierender Schmelzadhäsivsysteme

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

An Erratum to this article was published on 19 November 2014

Abstract

Objectives

The goal of this work was to compare the demineralization of enamel associated with two different self-etching primers and traditional acid etching.

Materials and methods

A total of 15 volunteers (23–32 years, 8 male and 7 female) were provided with a removable archwire/resin appliance to be worn 20 h/day for 28 days. The device was attached to the mandibular posterior teeth and included samples of human enamel (from extracted third molars) located in both posterior vestibules. Both sides featured the same distribution of samples, including one untreated control sample (group A) and three samples with brackets (Victory™ APC II) bonded to their surface after conditioning with a self-etching non-fluoride primer (iBond™ Gluma® Inside; group B), a self-etching fluoride-releasing primer (Transbond™ Plus; group C), or traditional acid-etching with 35 % phosphoric acid and Transbond™ XT (group D).

Mineral loss was assessed extraorally under standardized conditions using quantitative light-induced fluorescence (QLF) with a specialized camera system (Inspektor Pro). Results were expressed as relative fluorescence loss (ΔF in %). A baseline measurement (T0) was taken before the appliance was first inserted but with the brackets already bonded. Fluorescence loss was analyzed after 3 (T1), 7 (T2), 14 (T3), and 28 days (T4) and compared to the baseline loss (T0) for each of the four study groups (A to D). Kruskal–Wallis and Mann–Whitney U tests were used to compare the results for statistical significance.

Results

The lowest percentages of fluorescence loss both at baseline and during the follow-up assessments was found in group C. While all three experimental groups (B, C, D) presented total decreases in fluorescence loss after 28 days, indicating remineralization, the decrease in group C was the largest. The Kruskal–Wallis test yielded no significant differences between the three groups other than a significantly lower percentage of fluorescence loss in group C than in group D during the last assessment (T4). The untreated samples of control enamel (group A) revealed increasing percentages of fluorescence loss over the entire study period.

Conclusion

Use of the self-etching primers (groups B and C) was not associated with patterns of enamel demineralization different from those noted after traditional etching with phosphoric acid (group D). The only significant difference we observed was between the self-etching fluoride-releasing primer (group C) and traditional etching (group D) at the final assessment (T4). Thus, the fluoride-releasing system Transbond™ Plus was advantageous.

Zusammenfassung

Ziel

Ziel dieser Untersuchung war es, in situ den Mineralverlust zweier selbst konditionierender Systeme im Vergleich zu konventioneller Schmelzätzung zu untersuchen.

Material und Methodik

Von 15 Probanden (23–32 Jahre, 8 männlich, 7 weiblich) wurde für 28 Tage (≥ 20 h/Tag) eine herausnehmbare Drahtbogen-Kunststoff-Schiene getragen, die an den Unterkieferseitenzähnen befestigt war und in die beidseits bukkal humane Schmelzproben von extrahierten Weisheitszähnen eingearbeitet waren. Auf jeder Seite wurde eine unbehandelte Schmelzprobe mitgeführt (Gruppe A). Zwei selbst konditionierende Adhäsivsysteme [iBond™ Gluma® inside (Gruppe B) und Fluorid freisetzendes Transbond™ Plus Self Etching Primer (Gruppe C)] und ein konventionelles Schmelzätzverfahren [35 %ige Phosphorsäure mit Transbond™ XT (Gruppe D)] wurden verwendet, um Brackets (Victory APC™ II) zu befestigen.

Der Mineralverlust wurde mittels quantitativer Lichtfluoreszenz (Inspektor Pro Intraoral Fluorescence Camera, Inspektor Research Systems BV) unter standardisierten Bedingungen extraoral als Fluoreszenzverlust (∆F) in % bestimmt. Die Baseline-Messung (T0) erfolgte nach Bracketbefestigung und vor Eingliederung der Schiene. Jeweils nach 3 (T1), 7 (T2), 14 (T3) und 28 (T4) Tagen wurde der prozentuale Fluoreszenzabfall der verwendeten Systeme mit den Baseline-Werten quantitativ verglichen. Die Ergebnisse wurden mit dem Kruskal-Wallis-Test und dem Mann-Whitney-U-Test auf Signifikanz untersucht.

Ergebnisse

Transbond™ Plus zeigte sowohl in der Ausgangsmessung als auch in den weiteren Verlaufskontrollen die geringsten Fluoreszenzverluste. Über den Beobachtungszeitraum von 28 Tagen war für alle Adhäsivsysteme insgesamt eine Abnahme des Fluoreszenzverlustes, also eine Remineralisation, zu verzeichnen. Diese war bei Transbond™ Plus am größten. Der Kruskal-Wallis-Test ergab keine signifikanten Unterschiede zwischen den 3 Gruppen. Lediglich bei der Abschlussmessung nach 4 Wochen war der Fluoreszenzverlust bei den mit Transbond™ Plus befestigten Proben signifikant geringer als bei den Proben, die mit konventioneller Schmelzätztechnik vorbehandelt worden waren. Die unbehandelten Schmelzproben wiesen während des gesamten Beobachtungszeitraumes einen zunehmenden Fluoreszenzverlust auf.

Schlussfolgerung

Die Demineralisation des Zahnschmelzes bei den untersuchten selbst konditionierenden Adhäsiven (Gruppe B und C) unterscheidet sich nicht von der der konventionellen Konditionierung mittels Phosphorsäure (Gruppe D). Ein signifikanter Unterschied war lediglich bei der Abschlussmessung nach 4 Wochen zwischen Transbond™ Plus (Gruppe C) und der konventionellen Ätztechnik (Gruppe D) zu verzeichnen. Das Fluorid freisetzende System Transbond™ Plus ist daher vorteilhaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Al-Khateeb S, Forsberg CM, de Josselin de Jong E et al (1998) A longitudinal laser fluorescence study of white spot lesions in orthodontic patients. Am J Orthod Dentofacial Orthop 113:595–602

    Article  PubMed  Google Scholar 

  2. Alammari MR, Smith PW, de Josselin de Jong E et al (2013) Quantitative light-induced fluorescence (QLF): a tool for early occlusal dental caries detection and supporting decision making in vivo. J Dent 41:127–132

    Article  PubMed  Google Scholar 

  3. Amaechi BT, Higham SM, Edgar WM (1998) Efficacy of sterilisation methods and their effect on enamel demineralisation. Caries Res 32:441–446

    Article  PubMed  Google Scholar 

  4. Arends J, Bosch JJ ten (1992) Demineralization and remineralization evaluation techniques. J Dent Res 71:924–928

    PubMed  Google Scholar 

  5. Årtun J, Thylstrup A (1989) A 3-year clinical and SEM study of surface changes of carious enamel lesions after inactivation. Am J Orthod Dentofacial Orthop 95:327–333

    Article  PubMed  Google Scholar 

  6. Atack NE, Sandy JR, Addy M (1996) Periodontal and microbiological changes associated with the placement of orthodontic appliances. A review. J Periodontol 67:78–85

    Article  PubMed  Google Scholar 

  7. Benson PE, Pender N, Higham SM (2003) Quantifying enamel demineralization from teeth with orthodontic brackets—a comparison of two methods. Part 1: repeatability and agreement. Eur J Orthod 25:149–158

    Article  PubMed  Google Scholar 

  8. Bergstrand F, Twetman S (2003) Evidence for the efficacy of various methods of treating white-spot lesions after debonding of fixed orthodontic appliances. J Clin Orthod 37:19–21

    PubMed  Google Scholar 

  9. Brudevold F, Aasenden R, Bakhos Y (1982) A preliminary study of posteruptive maturation of teeth in situ. Caries Res 16:243–248

    Article  PubMed  Google Scholar 

  10. Cain K, Hicks J, English J et al (2006) In vitro enamel caries formation and orthodontic bonding agents. Am J Dent 19:187–192

    PubMed  Google Scholar 

  11. Cal-Neto JP, Miguel JA (2006) Scanning electron microscopy evaluation of the bonding mechanism of a self-etching primer on enamel. Angle Orthod 76:132–136

    PubMed  Google Scholar 

  12. Dahlberg G (1940) Statistical methods for medical and biological students. In: Dahlberg G (ed) Statistical methods for medical and biological students. George Allen & Unwin, London, pp 122–132

  13. Diedrich P (2000) Bracket-Adhäsivtechnik. In: Diedrich P (eds) Praxis der Zahnheilkunde, Kieferorthopädie I–III. Urban & Fischer, München, pp 169–188

  14. Emilson CG (1994) Potential efficacy of chlorhexidine against mutans streptococci and human dental caries. J Dent Res 73:682–691

    PubMed  Google Scholar 

  15. Frankenberger R, Krämer N, Sindel J (1997) Beeinflussen Dentinadhäsive und ihre Applikation die Schmelzhaftung? Dtsch Zahnärztl Z 52:202–205

    Google Scholar 

  16. Ghiz MA, Ngan P, Kao E et al (2009) Effects of sealant and self-etching primer on enamel decalcification. Part II: an in-vivo study. Am J Orthod Dentofacial Orthop 135:206–213

    Article  PubMed  Google Scholar 

  17. Glatz EGM, Featherstone JDB (1985) Demineralization related to orthodontic bands and brackets—a clinical study [abstract]. Am J Orthod 87:87

    Article  Google Scholar 

  18. Gmur R, Giertsen E, Veen MH van der et al (2006) In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization. Clin Oral Investig 10:187–195

    Article  PubMed  Google Scholar 

  19. Gorelick L, Geiger AM, Gwinnett AJ (1982) Incidence of white spot formation after bonding and banding. Am J Orthod 81:93–98

    Article  PubMed  Google Scholar 

  20. Gorton J, Featherstone JD (2003) In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 123:10–14

    Article  PubMed  Google Scholar 

  21. Haro Divin XP (2005) Evaluation der quantitativen lichtinduzierten Fluoreszenz (QLF) zur Diagnostik der Karies im frühen Stadium. Zahnmed Diss. Universität Freiburg i. Br

  22. Hazelrigg CO, Dean JA, Fontana M (2003) Fluoride varnish concentration gradient and its effect on enamel demineralization. Pediatr Dent 25:119–126

    PubMed  Google Scholar 

  23. Heintze SD, Miethke R-R (1993) Kieferorthopädie und Kariesrisiko. Prakt Kieferorthop 7:31–46

    Google Scholar 

  24. Hellwig E, Klimek J, Attin T (2009) Einführung in die Zahnerhaltung, 5. Aufl. Deutscher Zahnärzte Verlag, Köln

  25. Hellwig E, Lussi A (2001) What is the optimum fluoride concentration needed for the remineralization process? Caries Res 35(Suppl 1):57–59

    Article  PubMed  Google Scholar 

  26. Hobson RS, McCabe JF, Hogg SD (2001) Bond strength to surface enamel for different tooth types. Dent Mater 17:184–189

    Article  PubMed  Google Scholar 

  27. Holzmeier M, Schaubmayr M, Dasch W et al (2008) A new generation of self-etching adhesives: comparison with traditional acid etch technique. J Orofac Orthop 69:78–93

    Article  PubMed  Google Scholar 

  28. Horiuchi S, Kaneko K, Mori H et al (2009) Enamel bonding of self-etching and phosphoric acid-etching orthodontic adhesives in simulated clinical conditions: debonding force and enamel surface. Dent Mater J 28:419–425

    Article  Google Scholar 

  29. Ireland AJ, Knight H, Sherriff M (2003) An in vivo investigation into bond failure rates with a new self-etching primer system. Am J Orthod Dentofacial Orthop 124:323–326

    Article  PubMed  Google Scholar 

  30. Kern M, Jonas I (1988) Kariesbefall und Parodontalverhältnisse bei 100 Zahnmedizinstudenten der klinischen Semester. Oralprophylaxe 2:47–54

    Google Scholar 

  31. Klocke A, Shi J, Kahl-Nieke B et al (2003) Bond strength with custom base indirect bonding techniques. Angle Orthod 73:176–180

    PubMed  Google Scholar 

  32. Knösel M, Forslund L, Jung K et al (2012) Efficacy of different strategies in protecting enamel against demineralization during fixed orthodontic treatment. J Orofac Orthop 73:194–203

    Article  PubMed  Google Scholar 

  33. Kronenberg O, Lussi A, Ruf S (2009) Preventive effect of ozone on the development of white spot lesions during multibracket appliance therapy. Angle Orthod 79:64–69

    Article  PubMed  Google Scholar 

  34. Kühnisch J, Heinrich-Weltzien R (2004) Quantitative light-induced fluorescence (QLF)—a literature review. Int J Comput Dent 7:325–338

    PubMed  Google Scholar 

  35. Lange DE, Plagmann HC, Eenboom A et al (1977) Clinical methods for the objective evaluation of oral hygiene. Dtsch Zahnarztl Z 32:44–47

    PubMed  Google Scholar 

  36. Lovrov S, Hertrich K, Hirschfelder U (2007) Enamel demineralization during fixed orthodontic treatment—incidence and correlation to various oral-hygiene parameters. J Orofac Orthop 68:353–363

    Article  PubMed  Google Scholar 

  37. Mattingly JA, Sauer GJ, Yancey JM et al (1983) Enhancement of streptococcus mutans colonization by direct bonded orthodontic appliances. J Dent Res 62:1209–1211

    Article  PubMed  Google Scholar 

  38. Millett DT, Doubleday B, Alatsaris M et al (2005) Chlorhexidine-modified glass ionomer for band cementation? An in vitro study. J Orthod 32:36–42

    Article  PubMed  Google Scholar 

  39. Mitchell L (1992) Decalcification during orthodontic treatment with fixed appliances—an overview. Br J Orthod 19:199–205

    PubMed  Google Scholar 

  40. Mizrahi E (1982) Enamel demineralization following orthodontic treatment. Am J Orthod 82:62–67

    Article  PubMed  Google Scholar 

  41. Nalbantgil D, Oztoprak MO, Cakan DG et al (2013) Prevention of demineralization around orthodontic brackets using two different fluoride varnishes. Eur J Dent 7:41–47

    Article  PubMed Central  PubMed  Google Scholar 

  42. O’Reilly MM, Featherstone JDB (1987) Demineralization and remineralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop 92:33–40

    Article  Google Scholar 

  43. Øgaard B (1989) Prevalence of white spot lesions in 19-year-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofacial Orthop 96:423–427

    Article  PubMed  Google Scholar 

  44. Øgaard B, Alm AA, Larsson E et al (2006) A prospective, randomized clinical study on the effects of an amine fluoride/stannous fluoride toothpaste/mouthrinse on plaque, gingivitis and initial caries lesion development in orthodontic patients. Eur J Orthod 28:8–12

    Article  PubMed  Google Scholar 

  45. Øgaard B, Larsson E, Henriksson T et al (2001) Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am J Orthod Dentofacial Orthop 120:28–35

    Article  PubMed  Google Scholar 

  46. Øgaard B, Rezk-Lega F, Ruben J et al (1992) Cariostatic effect and fluoride release from a visible light-curing adhesive for bonding of orthodontic brackets. Am J Orthod Dentofacial Orthop 101:303–307

    Article  PubMed  Google Scholar 

  47. Øgaard B, Rølla G, Arends J (1988) Orthodontic appliances and enamel demineralization. Am J Orthod Dentofacial Orthop 94:68–73

    Article  PubMed  Google Scholar 

  48. Pancherz H, Mühlich DP (1997) Entwicklung von Karies bei kieferorthopädischer Behandlung mit festsitzenden Apparaturen—Ein Vergleich von Zähnen mit und ohne Kariesvorschädigungen. Kieferorthop 11:139–144

    Google Scholar 

  49. Papacchini F, Goracci C, Sadek FT et al (2005) Microtensile bond strength to ground enamel by glass-ionomers, resin-modified glass-ionomers, and resin composites used as pit and fissure sealants. J Dent 33:459–467

    Article  PubMed  Google Scholar 

  50. Paschos E, Kleinschrodt T, Clementino-Luedemann T et al (2009) Effect of different bonding agents on prevention of enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 135:603–612

    Article  PubMed  Google Scholar 

  51. Pretty IA, Hall AF, Smith PW et al (2002) The intra- and inter-examiner reliability of quantitative light-induced fluorescence (QLF) analyses. Br Dent J 193:105–109

    Article  PubMed  Google Scholar 

  52. Pretty IA, Ingram GS, Agalamanyi EA et al (2003) The use of fluorescein-enhanced quantitative light-induced fluorescence to monitor de- and remineralization of in vitro root caries. J Oral Rehabil 30:1151–1156

    Article  PubMed  Google Scholar 

  53. Rix D, Foley TF, Banting D et al (2001) A comparison of fluoride release by resin-modified GIC and polyacid-modified composite resin. Am J Orthod Dentofacial Orthop 120:398–405

    Article  PubMed  Google Scholar 

  54. Rosenbeck KA (2010) Effektivität der Bracketumfeldbehandlung—eine in vitro Untersuchung. Zahnmed Diss. Ludwig-Maximilians-Universität München

  55. Saxer UP, Mühlemann HR (1975) Motivation and education. SSO Schweiz Monatsschr Zahnheilkd 85:905–919

    PubMed  Google Scholar 

  56. Schroeder H (2000) Orale Strukturbiologie. Thieme, Stuttgart

  57. Shi XQ, Tranaeus S, Angmar-Månsson B (2001) Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Caries Res 35:21–26

    Article  PubMed  Google Scholar 

  58. Sköld-Larsson K, Sollenius O, Karlsson L et al (2013) Effect of fluoridated milk on enamel demineralization adjacent to fixed orthodontic appliances. Acta Odontol Scand 71:464–468

    Article  PubMed  Google Scholar 

  59. Slaybaugh R (2000) Sterilization: gas plasma, steam and washer-decontamination. Infection Control Today

  60. Sonju Clasen AB, Øgaard B, Duschner H et al (1997) Caries development in fluoridated and non-fluoridated deciduous and permanent enamel in situ examined by microradiography and confocal laser scanning microscopy. Adv Dent Res 11:442–447

    Article  PubMed  Google Scholar 

  61. Strawn SE, White JM, Marshall GW et al (1996) Spectroscopic changes in human dentine exposed to various storage solutions—short term. J Dent 24:417–423

    Article  PubMed  Google Scholar 

  62. Sukontapatipark W, el-Agroudi MA, Selliseth NJ et al (2001) Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur J Orthod 23:475–484

    Article  PubMed  Google Scholar 

  63. Tanna N, Kao E, Gladwin M et al (2009) Effects of sealant and self-etching primer on enamel decalcification. Part I: an in-vitro study. Am J Orthod Dentofacial Orthop 135:199–205

    Article  PubMed  Google Scholar 

  64. Tranaeus S, Al-Khateeb S, Bjorkman S et al (2001) Application of quantitative light-induced fluorescence to monitor incipient lesions in caries-active children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci 109:71–75

    Article  PubMed  Google Scholar 

  65. Tranaeus S, Shi XQ, Lindgren LE et al (2002) In vivo repeatability and reproducibility of the quantitative light-induced fluorescence method. Caries Res 36:3–9

    Article  PubMed  Google Scholar 

  66. Tufekci E, Dixon JS, Gunsolley JC et al (2011) Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod 81:206–210

    Article  PubMed  Google Scholar 

  67. Watted N, Gerá S (2011) Effektives White-Spot-Management in der kieferorthopädischen Therapie. ZMK 27:1–7

    Google Scholar 

  68. Yi GK, Dunn WJ, Taloumis LJ (2003) Shear bond strength comparison between direct and indirect bonded orthodontic brackets. Am J Orthod Dentofacial Orthop 124:577–581

    Article  PubMed  Google Scholar 

  69. Zero DT (1995) In situ caries models. Adv Dent Res 9:214–230

    PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. D. Visel, T. Jäcker, P.G. Jost-Brinkmann, and T.M. Präger state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Visel, T. Jäcker, P.G. Jost-Brinkmann und T.M. geben an, dass kein Interessenkonflikt besteht. Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Acknowledgment

The authors wish to thank the manufacturers 3M Unitek, Heraeus Kulzer, and GABA for providing the materials used in this study. They are also indebted to Michael Radeck and Dr. Edgar Dietrich for statistical support.

Danksagung

Wir danken 3M Unitek™, Heraeus Kulzer und GABA für die Bereitstellung der Materialien. Weiterhin gilt unser Dank Michael Radeck und Dr. Edgar Dietrich für die Unterstützung bei der statistischen Auswertung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Visel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visel, D., Jäcker, T., Jost-Brinkmann, PG. et al. Demineralization adjacent to orthodontic brackets after application of conventional and self-etching primer systems. J Orofac Orthop 75, 358–373 (2014). https://doi.org/10.1007/s00056-014-0233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0233-9

Keywords

Schlüsselwörter

Navigation