Skip to main content
Log in

Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

O-alkylated vanillin derivatives 2a–f and acetylferrocene react under Claisen–Schmidt conditions, resulting in good-to-high yields of the corresponding ferrocene chalcones 3a–f. None of the resultant compounds 3b–f has been previously described in the literature. All synthesized compounds were characterized by spectral and physical data, whereas two of them, 1-ferrocenyl-3-(4-ethoxy-3-methoxyphenyl)-prop-2-en-1-one (3b) and 1-ferrocenyl-3-(4-buthoxy-3-methoxy-phenyl)-prop-2-en-1-one (3e), were crystalline substances, suitable for single-crystal X-ray analysis, which confirmed undoubtedly their structures. Chalcones 3a–f were tested for their biological activity and demonstrated relatively good in vitro antimicrobial activity towards different strains of bacteria and fungi. The best antibacterial activity is expressed by compounds 3b and 3c, while compound 3d shows the best antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Rahman AAH, Abdel-Megied AES, Hawata MAM, Kasem ER, Shabaan MT (2007) Synthesis and antimicrobial evaluation of some halcones and their derived pyrazoles, pyrazolines, isoxazolines, and 5,6-dihydropyrimidine-2-(1H)-thiones. Monatshefte 138:889–897

    Article  CAS  Google Scholar 

  • Achanta G, Modzelewska A, Feng L, Khan SR, Huang P (2006) A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol Pharmacol 70:426–433

    CAS  PubMed  Google Scholar 

  • Agilent Technologies (2013) CrysAlis PRO. Yarnton, Oxfordshire, UK

  • Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B58:380–388

    Article  CAS  Google Scholar 

  • Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, Bhasin VK (2009) Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res 18:407–420

    Article  CAS  Google Scholar 

  • Bag S, Ramar S, Degani MS (2009) Synthesis and biological evaluation of α,β-unsaturated ketone as potential antifungal agents. Med Chem Res 18:309–316

    Article  CAS  Google Scholar 

  • Blažević N, Kolbah D, Belin B, Šunjić V, Kajfež F (1979) Hexamethylenetetramine, a versatile reagent in organic syntheses. Synthesis 3:161–176

    Google Scholar 

  • Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G, Spagna R (2003) SIR2002: the program. J Appl Crystallogr 36:1103

    Article  CAS  Google Scholar 

  • Chan MM (1995) Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49:1551–1556

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Christensen SB, Zhai L, Rasmussen MH, Theander T, Frokjaer S, Steffansen B, Davidsen J, Kharazmi A (1997) The novel oxygenated chalcone, 2,4-dimethoxy-4’-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis 176:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Cheng JH, Hung CF, Yang SC, Wang JP, Won SJ, Lin CH (2008) Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2’,5’-dialkoxylchalcones as cancer chemopreventive agents. Bioorg Med Chem 16:7270–7276

    Article  CAS  PubMed  Google Scholar 

  • Damljanović I, Čolović M, Vukićević M, Manojlović D, Radulović N, Wurst K, Laus G, Ratković Z, Joksović M, Vukićević RD (2009) Synthesis, spectral characterization and electrochemical properties of 1H-3-(o-, m- and p-ferrocenylphenyl)-1-phenylpyrazole-4-carboxaldehydes. J Organomet Chem 694:1575–1580

    Article  Google Scholar 

  • Damljanović I, Vukićević M, Radulović N, Ellmerer E, Ratković Z, Joksović M, Vukićević RD (2009) Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg Med Chem Lett 19:1093–1096

    Article  PubMed  Google Scholar 

  • Dubey SK, Sharma AK, Narain U, Misra K, Pati U (2008) Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. Eur J Med Chem 43:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Echeverria C, Santibanez JF, Donoso-Tauda O, Escobar CA, Tagle RR (2009) Structural antitumoral activity relationships of synthetic chalcones. Int J Mol Sci 10:221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards ML, Stemerick DM, Sunkara SP (1988) Chalcone derivatives useful in controlling growth of tumor tissue and their preparation. European Patent Application EP 288,794

  • Farkaš V (2003) Structure and biosynthesis of fungal cell walls: methodological approaches. Folia Microbiol 48:469–478

    Article  Google Scholar 

  • Farrugia LJ (1997) ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  • Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25–36

    Article  Google Scholar 

  • Herencia F, Ferrandiz ML, Ubeda A, Dominguez JN, Charris EJ, Lobo GM, Alcaraz MJ (1998) Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg Med Chem Lett 8:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Hugo WB, Russell AD (1983), Pharmaceutical microbiology, 3rd edn. Blackwell Scientific Publications: Oxford, UK

  • Ilango K, Valentina P, Saluja G (2010) Synthesis and in vitro anticancer activity of some substituted chalcones derivatives. Res J Pharm Biol Chem Sci 1:354–359

    CAS  Google Scholar 

  • Kalirajan R, Sivakumar SU, Jubie S, Gowramma B, Suresh B (2009) Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int J ChemTech Res 1:27–34

    CAS  Google Scholar 

  • Katade S, Phalgune U, Biswas S, Wakharkar R, Deshpande N (2008) Microwave studies on synthesis of biologically active chalcones derivatives. Indian J Chem 47B:927–931

    CAS  Google Scholar 

  • Katritzky AR, Long Q, He H, Qiua G, Wilcox AL (2006) Preparation of 2-alkoxy-5-methoxybenzaldehyde and 2-methoxy-5-alkoxybenzaldehydes. Arkivoc vi: 868–875

    Google Scholar 

  • Kaushik S, Kumar N, Drabu S (2010) Synthesis and anticonvulsant activities of phenoxy chalcones. Pharm Res 3:257–262

    Google Scholar 

  • Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T (2011) Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett 20:3916–3919

    Article  Google Scholar 

  • Lahtchev KL, Batovska DI, Parushev SP, Ubiyvovk VM, Sibirny AA (2008) Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur J Med Chem 43:2220–2228

    Article  CAS  PubMed  Google Scholar 

  • Lim SS, Kim HS, Lee DU (2007) In vitro antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc 28:2495–2497

    Article  CAS  Google Scholar 

  • Loev B, Dawson CR (1956) Alkylphenols related to the poison ivy principle. An improved method of synthesis involving the Na-Butanol cleavage of benzyl ethers. J Am Chem Soc 78:6095–6101

    Article  CAS  Google Scholar 

  • Liu M, Wilairat P, Go ML (2001) Antimalarial alkoxylated and hydroxylated chalcones: structure-activity relationship analysis. J Med Chem 44:4443–4452

  • Lunardi F, Guzela M, Rodrigues AT, Corre R, Eger-Mangrich I, Steindel M, Grisard EC, Assreuy J, Calixto JB, Santos ARS (2003) Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrob Agents Chemother 47:1449–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  • Maliar T, Jedinak A, Kadrabova J, Sturdik E (2004) Structural aspects of flavonoids as trypsin inhibitors. Eur J Med Chem 39:241–248

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Narain U, Mishra R, Mishra K (2005) Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcumin-glycine-piperic acid and their antibacterial and antifungal properties. Bioorg Med Chem 13:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Mostahar S, Katun P, Islam A (2007) Synthesis of two vanillin ring containing flavones by different methods and studies of their antibacterial and antifungal activities. J Biol Sci 7:514–519

    Article  CAS  Google Scholar 

  • Motta LF, Gaudio AC, Takahata Y (2006) Quantitative structure–activity relationships of a series of chalcone derivatives (1,3–diphenyl–2–propen–1–one) as anti Plasmodium falciparum agents (anti malaria agents). Internet Electron J Mol Des 5:555–569

    CAS  Google Scholar 

  • Nardelli M (1995) PARST95 – an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J Appl Crystallogr 28:659

    Article  CAS  Google Scholar 

  • NCCLS (National Commitee for Clinical Laboratory Standards) (1998) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: proposed Standard M38-P. NCCLS, Wayne, PA, USA

  • Nishimura RT, Giammanco CH, Vosburg DA (2010) Green, enzymatic syntheses of divanillin and diapocynin for the organic, biochemistry, or advanced general chemistry laboratory. J Chem Ed 87:526–527

    Article  CAS  Google Scholar 

  • Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137

    Article  CAS  PubMed  Google Scholar 

  • Opletalova V (2000) Chalcones and their heterocyclic analogs as potential therapeutic agents in bacterial diseases. Cesk Slov Farm 49:278–284

    CAS  Google Scholar 

  • Oyedapo AO, Mankanju VO, Adewunmi CO, Iwalewa EO, Adenowo TK (2004) Antitrichomonal activity of 1,3-diaryl-2-propen-1-ones on Trichomonas gallinae. Afr J Trad CAM 1:55–62

    CAS  Google Scholar 

  • Pepper JM, MacDonald JA (1953) The synthesis of syringaldehyde from vanillin. Can J Chem 31:476–483

    Article  CAS  Google Scholar 

  • Ratković Z, Juranić ZD, Stanojković T, Manojlović D, Vukićević RD, Radulović N, Joksović M (2010) Synthesis, characterization, electrochemical studies and antitumor activity of some new chalcone analogues containing ferrocenyl pyrazole moiety. Bioorg Chem 38:26–32

    Article  PubMed  Google Scholar 

  • Ratković Z, Muškinja J, Burmudžija A, Ranković B, Kosanić M, Bogdanović GA, Simović Marković B, Nikolić A, Arsenijević N, Đorđević S, Vukićević RD (2016) Dehydrozingerone based 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles: synthesis, characterization and anticancer activity. J Mol Struct 1109:82–88

    Article  Google Scholar 

  • Romagnoli R, Baraldi PG, Carrion MD, Cara CL, Cruz-Lopez O, Preti D (2008) Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorg Med Chem 16:5367–5376

    Article  CAS  PubMed  Google Scholar 

  • Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo WD, Ryu YB, Curtis-Long MJ, Lee CW, Ryu HW, Jang KC (2010) Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur J Med Chem 45:2010–2017

    Article  CAS  PubMed  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  • Sivakumar PM, Ganesan S, Veluchamy P, Doble M (2010) Novel chalcones and 1,3,5-triphenyl-2-pyrazoline derivatives as antibacterial agents. Chem Biol Drug Des 76:407–411

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar PM, Prabhakar PK, Doble M (2010) Synthesis, antioxidant evaluation and quantitative structure activity relationship studies of chalcones. Med Chem Res 19:1–17

    Google Scholar 

  • Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  • Szliszka E, Czuba ZP, Mazur B, Sedek L, Paradysz A, Krol W (2009) Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int J Mol Sci 11:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatsuzaki J, Bastow KF, Nakagawa-Goto K, Nakamura S, Itokawa H, Lee K (2006) Dehydrozingerone, chalcone, and isoeugenol analogues as in vitro anticancer agents. J Nat Prod 69:1445–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi AR, Dodiya DK, Ravat NR, Shah VH (2008) Synthesis and biological evaluation of some new pyrimidines via a novel chalcone series. Arkivoc (xi): 131-141

    Google Scholar 

  • Tsukiyama RI, Katsura H, Tokuriki N, Kobayashi M (2002) Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob Agents Chemother 46:1226–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilev RF, Kancheva VD, Fedorova GF, Batovska DI, Trofimov AV (2010) Antioxidant activity of chalcones: the chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinet Katal 51:507–515

    Article  CAS  Google Scholar 

  • Vogel S, Ohmayer S, Brunner G, Heilmann J (2008) Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and antioxidative activity. Bioorg Med Chem 16:4286–4293

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg LW, Coccia JB, Galhaith AR (1994) Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered after carcinogen exposure. Cancer Lett 83:165–169

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wilairat P, Go MN (2002) Antimalarial activity of ferrocenyl chalcones. Bioorg Med Chem Lett 12:2299–2302

    Article  CAS  PubMed  Google Scholar 

  • Yadav HL, Gupta P, Pawar PS, Singour PK, Patil UK (2010) Synthesis and biological evaluation of anti-inflammatory activity of 1,3-diphenyl propenone derivatives. Med Chem Res 19:1–8

    Google Scholar 

  • Yayli N, Ucuncu O, Yasar A, Kucuk M, Akyuz E, Karaoglu SA (2006) Synthesis and biological activities of N-alkyl derivatives of o-, m-, and p-nitro (E)-4-azachalcones and stereoselective photochemistry in solution with theoretical calculations. Turk J Chem 30:505–514

    CAS  Google Scholar 

  • Zhang XW, Zhao DH, Quan YC, Sun LP, Yin XM, Guan LP (2010) Synthesis and evaluation of anti-inflammatory activity of substituted chalcone derivatives. Med Chem Res 19:403–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia, Projects No. 172034 and 172014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Ratković.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

44_2016_1609_MOESM1_ESM.doc

The supplementary Crystallographic data for the structural analysis have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC-1407296 and 1407297 for compounds 3b and 3e respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Center, via www.ccdc.cam.ac.uk/data_request/cif or 12, Union Road, Cambridge, CB2 1EZ, UK; Fax:+44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

The supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muškinja, J., Burmudžija, A., Ratković, Z. et al. Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med Chem Res 25, 1744–1753 (2016). https://doi.org/10.1007/s00044-016-1609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1609-8

Keywords

Navigation