Skip to main content
Log in

Synthesis of novel porphyrin-based lipids and their antibacterial activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the antibacterial activity of newly developed cationic amphiphilic lipids having porphyrin as head group against two types of gram-positive bacteria and three types of gram-negative bacteria. The antibacterial activity of quantitatively prepared porphyrin-based amphiphilic lipids is evaluated by the disc-diffusion method against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris. These results are compared with the standard antibacterial activity of chloramphenicol. Both lipids showed antibacterial behaviour against gram-positive and gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

ROS:

Reactive oxygen species

S.A:

Staphylococcus aureus

E.C:

Escherichia coli

P.V:

Proteus vulgaris

K.P:

Klebsiella pneumoniae

B.S:

Bacillus subtilis

MPs:

Metalloporphyrins

References

  • Banerjee RK, Das PK, Srilakshmi GV, Chaudhuri A, Rao NM (1999) A novel series of non-glycerol based cationic transfection lipids for use in liposomal gene delivery. J Med Chem 42:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

  • Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183

    Article  PubMed  CAS  Google Scholar 

  • Boyce (1990) Increasing prevalence of methicillin-resistant Staphylococcus aureus in the United States. J M Infect Contro Hosp Epidemiol 11:639–642

    Article  CAS  Google Scholar 

  • Cebral JPS (1992) Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can J Microbiol 38:115–123

    Article  Google Scholar 

  • Cookson BD, Bolton MC, Platt JH (1991) Chlorhexidine resistance in methicillin-resistant Staphylococcus aureus or just an elevated MIC? An in vitro and in vivo assessment. Antimicrob Agents Chemother 35:1997–2002

    PubMed  CAS  Google Scholar 

  • Davis BD (1987) Mechanism of bacterial action of aminoglycosides. Microbiol Rev 51:341–350

    PubMed  CAS  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PA (2008) Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11

    Article  PubMed  CAS  Google Scholar 

  • Everse J, Hsia N (1997) The toxicities of native and modified hemoglobins. Fr Rad Biol Med 22:1075–1099

    Article  CAS  Google Scholar 

  • Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    PubMed  CAS  Google Scholar 

  • Gao H, Hui KM (2001) Synthesis of a novel series of cationic lipids that can act as efficient gene delivery vehicles through systematic heterocyclic substitution of cholesterol derivatives. Gene Ther 8:855–863

    Article  PubMed  CAS  Google Scholar 

  • Ghazaryan RK, Sahakyan LA, Tovmasyanl AG, Movsisyan LD, Hambardzumyan ADz (2008) Novel antimicrobial agents on the base of natural and synthetic metalloporphyrins. New Arm Med J 2:40–48

    Google Scholar 

  • Ghosh YK, Viswesaraiah SS, Bhattacharya S (2002) Advantage of the ether linkage between the positive charge and the cholesteryl skeleton in cholesterol-based amphiphiles as vectors for gene delivery. Bioconjug Chem 13:378–384

    Article  PubMed  CAS  Google Scholar 

  • Hancock EWR (1981) Aminoglycoside uptake and mode of action—with special reference to streptomycin and gentamicin: II. Effects of aminoglycosides on cells. J Antimicrob Chemother 8:429–445

    Article  PubMed  CAS  Google Scholar 

  • Jeremy AB, Marquita MQ, Dorota I, Robert HH, Srilakshmi PV, Jong-Mok K, David HT (2009) Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate. Bioconjug Chem 20:47–59

    Article  Google Scholar 

  • Jono K, Takayama T, Kuno M, Higashide E (1986) Effect of alkyl chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials. Chem Pharm Bull 34:4215–4224

    PubMed  CAS  Google Scholar 

  • Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamishira S, Kohno S, Nakashima M, Sasaki H (2004) Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 27:1321–1326

    Article  PubMed  CAS  Google Scholar 

  • Kügler R, Boulassa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348

    Article  PubMed  Google Scholar 

  • Kumar VV, Pichon C, Refregiers M, Guerin B, Midoux P, Chaudhuri A (2003) Non-viral vectors in cystic fibrosis gene therapy: progress and challenges. Gene Ther 10:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Lambert PA, Smith ARW (1977) The mode of action of N-(n = Dodecyl)diethanolamine with particular reference to the effect of protonation on uptake by Escherichia coli. J Gen Microbiol 103:367–374

    PubMed  CAS  Google Scholar 

  • Lambrechts SAG, Demidova TN, Aalders MCG, Hasan T, Hamblin MR (2005) Photochem Photobiol Sci 4:503–509

    Article  PubMed  CAS  Google Scholar 

  • Lasocki K, Szpakowska M, Grzybkowski J, Graczyk A (1999) Pharmacol Res 39:181–184

    Article  PubMed  CAS  Google Scholar 

  • Mahidhar YV, Rajesh M, Chaudhuri A (2004) Spacer-arm modulated gene delivery efficacy of novel cationic glycolipids: design, synthesis, and in vitro transfection biology. J Med Chem 47:3938–3948

    Article  PubMed  CAS  Google Scholar 

  • Mariusz G, Bozena Katarzyna, Alfreda G (2007) Bactericidal effect of photo dynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta Biochim Pol 54:665–670

    Google Scholar 

  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727–737

    PubMed  CAS  Google Scholar 

  • Moan J, Berg K, Kvam E, Western A, Malik Z, Ruck A, Snhneckenburger H (1989) Intracellular localization of photosensitizers. Photosensitizing compounds: their chemistry, biology and clinical use. Wiley, New York, pp 95–111

    Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Article  PubMed  CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  PubMed  CAS  Google Scholar 

  • Rajesh M, Srujan M, Mahidhar YV, Gangamodi NV, Ramakrishna S, Chaudhuri A (2009) Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver. Biomaterials 30:2369–2384

    Article  Google Scholar 

  • Sen J, Chaudhuri A (2005) Design, syntheses, and transfection biology of novel non-cholesterol-based guanidinylated cationic lipids. J Med Chem 48:812–820

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell nonselective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Micorbiol Rev 57:138–163

    CAS  Google Scholar 

  • Shelburne SA, Musher DM, Hulte K, Ceasar H, Lu YM, Bhaila I, Hamill JR (2004) In vitro killing of community-associated methicillin-resistant Staphylococcus aureus with drug combinations. Antimicrob Agents Chemother 48:4016–4019

    Article  PubMed  CAS  Google Scholar 

  • Srilakshmi GV, Sen J, Chaudhuri A, Ramdas Y, RaO NM (2002) Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups. Biochim Biophys Acta 1559:87–95

    Article  CAS  Google Scholar 

  • Stemper JE, Matsen JM (1970) Device for turbidity standardization of cultures for antibiotic sensitivity testing. Appl Microbiol 19:1015–1016

    PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Kumar V, Srinivasan N (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429–442

    Article  PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Evavold BD, Kumar V (2001) Antimicrobial properties of porphyrins. Expert Opin Investig Drug 10:309–320

    Article  CAS  Google Scholar 

  • Stojiljkovik K, Hantke K (1994) Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 13:719–732

    Article  Google Scholar 

  • Tomlinson E, Brown MRW, Davies SS (1977) Effect of colloidal association on the measured activity of alkylbenzyldimethylammonium chlorides against Pseudomonas aeruginosa. J Med Chem 20:1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Xu X-J, Xue Z, Xiao Q, Hou AX, Liu Y (2008) Antibacterial activities of novel diselenide-bridged bis(porphyrin)s on Staphylococcus aureus investigated by microcalorimetry. Biol Trace Elem Res 125:185–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Financial supports for this work from Council of Scientific and Industrial Research, CSIR (to P. V. Srilakshmi.), Government of India, New Delhi (the doctoral research fellowship to V. Amarnath) is gratefully acknowledged. We sincerely acknowledge the experimental assistance for the studies of antibacterial activity received from G. Kranthi Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srilakshmi Patri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velidandi, A., Gadidasu, K.K. & Patri, V.S. Synthesis of novel porphyrin-based lipids and their antibacterial activity. Med Chem Res 20, 1068–1073 (2011). https://doi.org/10.1007/s00044-010-9432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9432-0

Keywords

Navigation