Skip to main content
Log in

Abstract

This is a survey about the theory of Gabor frames. We review the structural results about Gabor frames over a lattice and then discuss the few known results about the fine structure of Gabor frames. We add a new result about the relation between properties of the window and properties of the frame set and conclude with a vision of how a more complete theory of the fine structure might look like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Beurling–Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier Anal. Appl. 6(1), 93–103 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascensi, G., Bruna, J.: Model space results for the Gabor and wavelet transforms. IEEE Trans. Inform. Theory 55(5), 2250–2259 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ascensi, G., Feichtinger, H.G., Kaiblinger, N.: Dilation of the Weyl symbol and Balian-Low theorem. Trans. Amer. Math. Soc. 366, 3865–3880 (2014)

  4. Balian, R.: Un principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II 292(20), 1357–1362 (1981)

    MathSciNet  Google Scholar 

  5. Bannert, S., Gröchenig, K., Stöckler, J.: Discretized Gabor frames of totally positive functions. IEEE Trans. Inform. Theory 60(1), 159–169 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bekka, B.: Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benedetto, J.J., Heil, C., Walnut, D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1(4), 355–402 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bittner, K., Chui, C.C.: Gabor frames with arbitrary windows. In: Chui, J.S.C.K., Schumaker, L.L. (eds.) Approximation Theorie X. Vanderbilt University Press, Nashville (2002)

    Google Scholar 

  9. Bölcskei, H.: Orthogonal frequency division multiplexing based on offset QAM. In: Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pp. 321–352. Birkhäuser Boston, Boston (2003)

  10. Christensen, O.: An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)

    Google Scholar 

  11. Conway, J.B.: A course in functional analysis, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  12. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Czaja, W., Powell, A.M.: Recent developments in the Balian-Low theorem. Harmonic analysis and applications, Appl. Numer. Harmon. Anal., pp. 79–100. Birkhäuser Boston, Boston (2006)

    Chapter  Google Scholar 

  14. Dai, X.-R., Sun, Q.: The \(abc\)-problem for Gabor systems. Preprint, http://arxiv.org/pdf/1304.7750

  15. Daubechies, I.: The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daubechies, I., Landau, H.J., Landau, Z.: Gabor time–frequency lattices and the Wexler–Raz identity. J. Fourier Anal. Appl. 1(4), 437–478 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Del Prete, V.: Estimates, decay properties, and computation of the dual function for Gabor frames. J. Fourier Anal. Appl. 5(6), 545–562 (1999)

  19. Dolson, M.: The phase vocoder: a tutorial. Comput. Music. J. 10(4), 11–27 (1986)

    Article  Google Scholar 

  20. Dörfler, M., Gröchenig, K.: Time–frequency partitions and characterizations of modulation spaces with localization operators. J. Funct. Anal. 260(7), 1903–1924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feichtinger, H.G.: On a new Segal algebra. Monatsh. Math. 92(4), 269–289 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. In Proceedings of “International Conference on Wavelets and Applications” 2002, pp. 99–140, Chennai, India, 2003. Updated version of a technical report, University of Vienna, 1983

  23. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MATH  Google Scholar 

  25. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Feichtinger, H.G., Janssen, A.J.E.M.: Validity of WH-frame bound conditions depends on the lattice parameters. Appl. Comp. Harmon. Anal. 8, 104–112 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Feichtinger, H.G., Kaiblinger, N.: Varying the time–frequency lattice of Gabor frames. Trans. Amer. Math. Soc. 356(5), 2001–2023 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. Gabor analysis and algorithms, pp. 233–266. Birkhäuser Boston, Boston (1998)

    Chapter  Google Scholar 

  29. Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. 57, 233–253 (2006)

    MathSciNet  Google Scholar 

  30. Feichtinger, H.G., Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser Boston, Boston (1998)

    MATH  Google Scholar 

  31. Feichtinger, H.G., Strohmer, T. (eds.): Advances in Gabor analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)

  32. Feichtinger, H.G., Sun, W.: Sufficient conditions for irregular Gabor frames. Adv. Comput. Math. 26(4), 403–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. Gabor Analysis and Algorithms, pp. 123–170. Birkhäuser Boston, Boston (1998)

    Chapter  Google Scholar 

  34. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  35. Gröchenig, K.: An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1), 87–104 (1996)

    MATH  MathSciNet  Google Scholar 

  36. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhäuser Boston Inc., Boston (2001)

    Book  MATH  Google Scholar 

  37. Gröchenig, K.: Time–frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22(2), 703–724 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. (2007). doi:10.1093/imrn/rnm111

  39. Gröchenig, K.: Wiener’s lemma: theme and variations. An introduction to spectral invariance. In: Forster, B., Massopust, P. (eds.) Four Short Courses on Harmonic Analysis, Appl. Num. Harm. Anal. Birkhäuser, Boston (2010)

    Google Scholar 

  40. Gröchenig, K.: Multivariate Gabor frames and sampling of entire functions of several variables. Appl. Comput. Harmon. Anal. 31(2), 218–227 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gröchenig, K., Han, D., Heil, C., Kutyniok, G.: The Balian–Low theorem for symplectic lattices in higher dimensions. Appl. Comput. Harmon. Anal. 13(2), 169–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Gröchenig, K., Janssen, A.J.E.M., Kaiblinger, N., Pfander, G.E.: Note on \(B\)-splines, wavelet scaling functions, and Gabor frames. IEEE Trans. Inform. Theory 49(12), 3318–3320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc. 17, 1–18 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Gröchenig, K., Lyubarskii, Y.: Gabor frames with Hermite functions. C. R. Math. Acad. Sci. Paris 344(3), 157–162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Gröchenig, K., Lyubarskii, Y.: Gabor (super)frames with Hermite functions. Math. Ann. 345(2), 267–286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Gröchenig, K., Y. Lyubarskii, Y.: Sampling of entire functions of several variables on a lattice and multivariate Gabor frames. Technical report (2013)

  47. Gröchenig, K., Ortega-Cerda, J., Romero, J.-L: Deformations of Gabor frames. Preprint, 2013, http://arxiv.org/abs/1311.3861

  48. Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162(6), 1003–1031 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. He, X.-G., Lau, K.-S.: On the Weyl–Heisenberg frames generated by simple functions. J. Funct. Anal. 261(4), 1010–1027 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Gu, Q., Han, D.: When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24(3), 290–309 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Heil, C.: A basis theory primer. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2011)

    Google Scholar 

  53. Hlawatsch, F., Matz, G.: Wireless Communications over Rapidly Time-Varying Channels. Academic Press, Amsterdam (2011)

    Google Scholar 

  54. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  55. Janssen, A.J.E.M.: Some counterexamples in the theory of Weyl–Heisenberg frames. IEEE Trans. Inform. Theory 42(2), 621–623 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. Janssen, A.J.E.M.: Some Weyl–Heisenberg frame bound calculations. Indag. Math. 7, 165–182 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  57. Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. Advances in Gabor Analysis. Birkhäuser Boston, Boston (2002)

    Google Scholar 

  58. Janssen, A.J.E.M.: On generating tight Gabor frames at critical density. J. Fourier Anal. Appl. 9(2), 175–214 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Janssen, A.J.E.M.L.: Classroom proof of the density theorem for Gabor systems. ESI preprints, 2005

  60. Janssen, A.J.E.M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12(2), 259–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  62. Katznelson, Y.: An Introduction to Harmonic Analysis. Wiley, New York (1968)

    MATH  Google Scholar 

  63. Kloos, T., Stöckler, J.: Zak transforms and Gabor frames of totally positive functions and exponential B-splines. Preprint, 2013. http://arxiv.org/abs/1311.7359

  64. Levin, B.Y.: Lectures on Entire Functions. American Mathematical Society, Providence, RI (1996). In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko

    MATH  Google Scholar 

  65. Low, F.: Complete sets of wave packets. In: DeTar, C. (ed.) A Passion for Physics-Essay in Honor of Geoffrey Chew, pp. 17–22. World Scientific, Singapore (1985)

    Google Scholar 

  66. Luef, F.: Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J. Funct. Anal. 257(6), 1921–1946 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  67. Lyubarskii, Y., Nes, P.G.: Gabor frames with rational density. Appl. Comput. Harmon. Anal. 34(3), 488–494 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  68. Lyubarskiĭ, Y.I.: Frames in the Bargmann space of entire functions. Entire and Subharmonic Functions, p. 167. American Mathematical Society, Providence, RI (1992)

    Google Scholar 

  69. Pfander, G.E., Rashkov, P.: Remarks on multivariate Gaussian Gabor frames. Monatsh. Math. 172(2), 179–187 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  70. Ramanathan, J., Steger, T.: Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2(2), 148–153 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  71. Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford (1968)

    MATH  Google Scholar 

  72. Rieffel, M.A.: Projective modules over higher-dimensional noncommutative tori. Can. J. Math. 40(2), 257–338 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  73. Ron, A., Shen, Z.: Weyl–Heisenberg frames and Riesz bases in \(L_2({\mathbb{R}}^d)\). Duke Math. J. 89(2), 237–282 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  74. Schoenberg, I.J.: On totally positive functions, Laplace integrals and entire functions of the Laguerre–Polya–Schur type. Proc. Nat. Acad. Sci. USA 33, 11–17 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  75. Schoenberg, I.J.: On Pólya frequency functions. I. The totally positive functions and their Laplace transforms. J. Anal. Math. 1, 331–374 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  76. Schoenberg, I.J., Whitney, A.: On Pólya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 246–259 (1953)

    MATH  MathSciNet  Google Scholar 

  77. Seip, K.: Density theorems for sampling and interpolation in the Bargmann–Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)

    MATH  MathSciNet  Google Scholar 

  78. Seip, K.: Interpolation and sampling in spaces of analytic functions, volume 33 of University Lecture Series. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  79. Strohmer, T.: Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harmon. Anal. 11(2), 243–262 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  80. Strohmer, T.: Pseudodifferential operators and Banach algebras in mobile communications. Appl. Comput. Harmon. Anal. 20(2), 237–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  81. Walnut, D.F.: Continuity properties of the Gabor frame operator. J. Math. Anal. Appl. 165(2), 479–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  82. Walnut, D.F.: Lattice size estimates for Gabor decompositions. Monatsh. Math. 115(3), 245–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  83. Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21(3), 207–221 (1990)

    Article  Google Scholar 

  84. Zeevi, Y.Y., Zibulski, M., Porat, M.: Multi-window Gabor schemes in signal and image representations. Gabor analysis and algorithms, pp. 381–407. Birkhäuser Boston, Boston (1998)

    Chapter  Google Scholar 

  85. Zibulski, M., Zeevi, Y.Y.: Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal. 4(2), 188–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This survey owes a lot to inspiring and fruitful collaborations with Yura Lyubarski and Joachim Stöckler and to many exciting discussions with them. I would like to thank Christopher Heil for his invaluable advice on mathematical writing and Hans Feichtinger for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Gröchenig.

Additional information

Communicated by A.J.E.M. Janssen.

K. G. was supported in part by the projects P22746-N13 and P26273-N25 of the Austrian Science Fund (FWF) and by National Research Network S106 SISE of FWF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröchenig, K. The Mystery of Gabor Frames. J Fourier Anal Appl 20, 865–895 (2014). https://doi.org/10.1007/s00041-014-9336-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9336-3

Keywords

Navigation