Skip to main content
Log in

An L2-identity and pinned distance problem

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \({\mu}\) be a Frostman measure on \({E\subset\mathbb{R}^d}\). The spherical average estimate

$$\int_{S^{d-1}}|\widehat{\mu}(r\omega)|^2\,d\omega\lesssim r^{-\beta}$$

was originally used to attack Falconer distance conjecture, via Mattila’s integral. In this paper we consider the pinned distance problem, a stronger version of Falconer distance problem, and show that spherical average estimates imply the same dimensional threshold on both of them. In particular, with the best known spherical average estimates, we improve Peres–Schlag’s result on pinned distance problem significantly. The idea in our approach is to reduce the pinned distance problem to an integral where spherical averages apply. The key new ingredient is the following identity. Using a group action argument, we show that for any Schwartz function f on \({\mathbb{R}^d}\) and any \({x\in\mathbb{R}^d}\),

$$\int_0^\infty|\omega_t*f(x)|^2\,t^{d-1}dt\,=\int_0^\infty|\widehat{\omega_r}*f(x)|^2\,r^{d-1}dr,$$

where \({\omega_r}\) is the normalized surface measure on \({r S^{d-1}}\). An interesting remark is that the right hand side can be easily seen equal to

$$c_d\int\left|D_x^{-\frac{d-1}{2}}e^{-2\pi it\sqrt{-\Delta}}f(x)\right|^2\,dt=c_d'\int\left|D_x^{-\frac{d-2}{2}}e^{2\pi{it}\Delta}f(x)\right|^2\,dt.$$

An alternative derivation of Mattila’s integral via group actions is also given in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barceló, J.A., Bennett, J.M., Carbery, A., Ruiz, A., Vilela, M.C.: A note on weighted estimates for the Schrödinger operator. Rev. Mat. Complut. 21(2), 481–488 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Barceló, J.A., Bennett, J.M., Carbery, A., Ruiz, A., Vilela, M.C.: Strichartz inequalities with weights in Morrey-Campanato classes. Collect. Math. 61(1), 49–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, M., Iosevich, A., Taylor, K.: Finite chains inside thin subsets of \(\mathbb{R}^d\). Anal. PDE 9(3), 597–614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Hausdorff dimension and distance sets. Israel J. Math. 87(1–3), 193–201 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: On the Erdős-Volkmann and Katz-Taoring conjectures. Geom. Funct. Anal. 13(2), 334–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Du and R. Zhang. Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions. arXiv:1805.02775 (2018)

  7. X. D. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang. Weighted restriction estimates and application to falconer distance set problem. to appear in Amer. J. Math., arXiv:1802.10186 (2018)

  8. Elekes, G., Sharir, M.: Incidences in three dimensions and distinct distances in the plane. Combinatorics, Probability and Computing 20(4), 571–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. B. Erdog̃an. A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not., 23 (2005), 1411–1425

  10. Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32(2), 206–212 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenleaf, A., Iosevich, A., Liu, B., Palsson, E.: A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral. Rev. Mat. Iberoam. 31(3), 799–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Guth and N. H. Katz. On the Erdős distinct distances problem in the plane. Ann. of Math. (2), 181(1) (2015), 155–190

  13. L. Guth, A. Iosevich, Y. Ou, and H. Wang. On falconer's distance set problem in the plane. arXiv:1808.09346. (2018)

  14. Hidano, K., Metcalfe, J., Smith, H.F., Sogge, C.D., Zhou, Y.: On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans. Amer. Math. Soc. 362(5), 2789–2809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iosevich, A., Liu, B.: Pinned distance problem, slicing measures, and local smoothing estimates. Trans. Amer. Math. Soc. (2018). https://doi.org/10.1090/tran/7693

    MATH  Google Scholar 

  16. A. Iosevich, K. Taylor, and I. Uriarte-Tuero. Pinned geometric configurations in euclidean space and riemannian manifolds. arXiv:1610.00349v1.pdf (2016)

  17. M. Kaneko and G.-I. Sunouchi. On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tohoku Math. J. (2), 37(3) (1985), 343–365

  18. T. Keleti and P. Shmerkin. New bounds on the dimensions of planar distance sets. arXiv:1801.08745 (2018)

  19. Koh, Y., Seo, I.: On weighted \(L^2\) estimates for solutions of the wave equation. Proc. Amer. Math. Soc. 144(7), 3047–3061 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, B.: Group actions, the mattila integral and applications. Amer. Math. Soc. (2017). https://doi.org/10.1090/proc/14406

    Google Scholar 

  21. Liu, B.: Improvement on \(2\)-chains inside thin subsets of Euclidean spaces. J. Geom. Anal. (2017). https://doi.org/10.1007/s12220-018-00124-9

    Google Scholar 

  22. B. Liu. Hausdor dimension of pinned distance sets and the L\(^2\)-method. arXiv:1810.08127 (2018)

  23. Lucà, R., Rogers, K.: Average decay of the Fourier transform of measures with applications. J. Eur. Math. Soc. (JEMS) 21(2), 465–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattila, P.: Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets. Mathematika 34(2), 207–228 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mattila, P.: Fourier analysis and Hausdorff dimension, vol. 150. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  26. Oberlin, D., Oberlin, R.: Spherical means and pinned distance sets. Commun. Korean Math. Soc. 30(1), 23–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Orponen, T.: On the distance sets of Ahlfors-David regular sets. Adv. Math. 307, 1029–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102(2), 193–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruiz, A., Vega, L.: Local regularity of solutions to wave equations with time-dependent potentials. Duke Math. J. 76(3), 913–940 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Shmerkin. On distance sets, box-counting and Ahlfors regular sets. Discrete Anal., pages Paper No. 9, 22, 2017

  31. P. Shmerkin. On the hausdor dimension of pinned distance sets. to appear in Israel J. Math., arXiv:1706.00131

  32. P. Shmerkin. Improved bounds for the dimensions of planar distance sets. arXiv:1811.03379 (2018)

  33. Sjölin, P.: Estimates of spherical averages of Fourier transforms and dimensions of sets. Mathematika 40(2), 322–330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wolff, T.: Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices 10, 547–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochen Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by ERC Starting Grant No. 713927.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B. An L2-identity and pinned distance problem. Geom. Funct. Anal. 29, 283–294 (2019). https://doi.org/10.1007/s00039-019-00482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00482-8

Navigation