Skip to main content
Log in

A New Approach to Analysis and Design of Chaos-Based Random Number Generators Using Algorithmic Converter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new approach to analysis and design of ADC-based random number generators. To this end, different full-bit and half-bit redundant stages of algorithmic converter are used to design chaotic maps. It is shown that, in the redundant and nonredundant structures, output probability density function of the converter stages and their related chaotic functions always converge to uniformity. It is demonstrated that residues become independent and uniformly distributed. This fact leads to the randomness and uniformity of distribution of the random number generator output bits. Moreover, it is shown that some common chaotic maps that are employed in chaotic random number generators can be implemented using nonredundant and half-bit redundant stages of algorithmic converter. In this way, the capability of ADC-based generators in designing chaotic maps and producing random number sequences is illustrated. The validity of the proposed chaos-based random number generator is confirmed using NIST statistical tests even in the presence of nonidealities in algorithmic converter. Since the ADCs are mixed-signal integrated circuits and can be used in high-speed applications, the ADC-based random number generator has high throughput and is easily embeddable in all analog and digital circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Callegari, R. Rovatti, G. Setti, Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. Signal Process. 53(2), 793–805 (2005)

    Article  MathSciNet  Google Scholar 

  2. T. Cho, P.R. Gray, A 10 b, 20 Msamples, 35 mW pipeline AD converter. IEEE J. Solid State Circuits 30(3), 166–172 (1995)

    Article  Google Scholar 

  3. I. Cicek, A.E. Pusane, G. Dundar, A new dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 81(1), 61–70 (2014)

    Article  Google Scholar 

  4. I. Cicek, A.E. Pusane, G. Dundar, A novel design method for discrete time chaos based true random number generators. Integra. VLSI J. 47(1), 38–47 (2014)

    Article  Google Scholar 

  5. P. Crippa, C. Turchetti, M. Conti, A statistical methodology for the design of high-performance CMOS current-steering digital-to-analog converters. EEE Trans. Comput. Aided Design Integr. Circuits Syst. 21(4), 377–394 (2002)

    Article  Google Scholar 

  6. M. Delgado-Restituto, A. Rodríguez-Vázquez, Mixed-signal map configurable integrated chaos generator for chaotic communications. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(12), 1462–1474 (2001)

    Article  Google Scholar 

  7. M. Drutarovsky, P. Galajda, Chaos-based true random number generator embedded in a reconfigurable hardware. J. Electr. Eng. 57(4), 218–225 (2006)

    Google Scholar 

  8. E. Fatemi-Behbahani, E. Farshidi, K. Ansari-Asl, A new approach to analysis of residue probability density function in pipelined ADCs. Integr. VLSI J. 52(1), 51–61 (2016)

    Article  Google Scholar 

  9. J. Guerber, M. Gande, U.-K. Moon, The analysis and application of redundant multistage ADC resolution improvements through PDF residue shaping. IEEE Trans. Circuits Syst. I Reg. Pap. 59(8), 1733–1742 (2012)

    Article  MathSciNet  Google Scholar 

  10. U. Güler, S. Ergün, A high speed, fully digital IC random number generator. AEU Int. J. Electron. Commun. 66(2), 143–149 (2012)

    Article  Google Scholar 

  11. P. Huang, S. Hsien, V. Lu, P. Wan, S.C. Lee, W. Liu, B.W. Chen, Y.P. Lee, W.T. Chen, T.Y. Yang, G.K. Ma, SHA-less pipelined ADC with in-situ background clock-skew calibration. IEEE J. Solid State Circuits 46(8), 1893–1903 (2011)

    Article  Google Scholar 

  12. O. Katz, D.A. Ramon, I.A. Wagner, A robust random number generator based on a differential current-mode chaos. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(12), 1677–1686 (2008)

    Article  Google Scholar 

  13. J.P. Keane, P.J. Hurst, S.H. Lewis, Digital background calibration for memory effects in pipelined analog-to-digital converters. IEEE Trans. Circuits Syst. I Reg. Pap. 53(3), 511–525 (2006)

    Article  Google Scholar 

  14. M.G. Kim, P.K. Hanumolu, U.-K. Moon, A 10 MS/s 11-bit 0.19 mm\(^{2}\) algorithmic ADC with improved clocking scheme. IEEE J. Solid State Circuits 44(9), 2348–2355 (2009)

    Article  Google Scholar 

  15. C.C. Lee, M.P. Flynn, A SAR-assisted two-stage pipeline ADC. IEEE J. Solid State Circuits 46(4), 859–869 (2011)

    Article  Google Scholar 

  16. B. Levy, A propagation analysis of residual distributions in pipeline ADCs. IEEE Trans. Circuits Syst. I Reg. Pap. 58(10), 2366–2376 (2011)

    Article  MathSciNet  Google Scholar 

  17. J. Li, G. Ahn, D. Chang, U.-K. Moon, A 0.9-V 12-mW 5-MSPS Algorithmic ADC With 77-dB SFDR. IEEE J. Solid State Circuits 40(4), 960–969 (2005)

    Article  Google Scholar 

  18. N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, X. Zou, Influence of statistical distribution properties on ultrafast random-number generation using chaotic semiconductor lasers. Optik Int. J. Light Electron. Opt. 125(14), 3555–3558 (2014)

    Article  Google Scholar 

  19. F. Maloberti, Data Converters (Springer, Berlin, 2007)

    Google Scholar 

  20. A. Papoulis, S.U. pillai, Probability Random Variables and Stochastic Processes, 4th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  21. F. Pareschi, G. Setti, R. Rovatti, Implementation and testing of high-speed CMOS true random number generators based on chaotic systems. IEEE Trans. Circuits Syst. I Reg. Pap. 57(12), 3124–3137 (2010)

    Article  MathSciNet  Google Scholar 

  22. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  23. S. Robson, B. Leung, G. Gong, Truly random number generator based on a ring oscillator utilizing last passage time. IEEE Trans. Circuits Syst. II Exp. Briefs 61(12), 937–941 (2014)

    Article  Google Scholar 

  24. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, A statistical test suite for random and pseudorandom number generators for cryptographic applications, in National Institute of Standards and Technology (NIST), Special Publication800-22, Revision 1a, (2010). http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf. (online)

  25. G. Setti, G. Mazzini, R. Rovatti, S. Callegari, Statistical modeling of discrete-time chaotic processes-basic finite-dimensional tools and applications. Proc. IEEE 90(5), 662–690 (2002)

    Article  Google Scholar 

  26. E.G. Soenen, R.L. Geiger, An architecture and an algorithm for fully digital correction of monolithic pipelined ADCs. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 42(3), 143–153 (1995)

    Article  Google Scholar 

  27. A.B. Sripad, D.L. Snyder, A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Trans. Acoust. Speech Signal Process. ASSP–25(5), 442–448 (1977)

    Article  MATH  Google Scholar 

  28. T. Stojanovski, L. Kocarev, Chaos-based random number generator–part I: analysis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Stojanovski, L. Kocarev, Construction of Markov partitions in PL1D maps. IEEE Trans. Circuits Syst. II Exp. Briefs 60(10), 702–706 (2013)

    Article  Google Scholar 

  30. T. Stojanovski, J. Pihl, L. Kocarev, Chaos-based random number generator–part II: practical realization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Widrow, I. Kollar, Quantization Noise-Roundoff Error in Digital Computation, Signal Processing, Control, and Communications (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  32. P.Z. Wieczorek, An FPGA implementation of the resolve time-based true random number generator with quality control. IEEE Trans. Circuits Syst. I Reg. Pap. 61(12), 3450–3459 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Farshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi-Behbahani, E., Ansari-Asl, K. & Farshidi, E. A New Approach to Analysis and Design of Chaos-Based Random Number Generators Using Algorithmic Converter. Circuits Syst Signal Process 35, 3830–3846 (2016). https://doi.org/10.1007/s00034-016-0248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0248-0

Keywords

Navigation