Skip to main content
Log in

Syntactic categories for Nori motives

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We give a new construction, based on categorical logic, of Nori’s \(\mathbb Q\)-linear abelian category of mixed motives associated to a cohomology or homology functor with values in finite-dimensional vector spaces over \(\mathbb Q\). This new construction makes sense for infinite-dimensional vector spaces as well, so that it associates a \(\mathbb Q\)-linear abelian category of mixed motives to any (co)homology functor, not only Betti homology (as Nori had done) but also, for instance, \(\ell \)-adic, p-adic or motivic cohomology. We prove that the \(\mathbb Q\)-linear abelian categories of mixed motives associated to different (co)homology functors are equivalent if and only a family (of logical nature) of explicit properties is shared by these different functors. The problem of the existence of a universal cohomology theory and of the equivalence of the information encoded by the different classical cohomology functors thus reduces to that of checking these explicit conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapura, D.: An abelian category of motivic sheaves. Adv. Math. 233, 135–195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M., Grothendieck, A., Verdier, J. L.: Théorie des topos et cohomologie étale des schémas, Séminaire de Géométrie Algébrique du Bois-Marie, année 1963–64; second edition published as Lecture Notes in Math., vols. 269, 270 and 305. Springer (1972)

  3. Ayoub, J., Barbieri-Viale, L.: Nori 1-motives. Mathematische Annalen 361(1–2), 367–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barr, M.: Exact categories. In: Exact Categories and Categories of Sheaves, Lecture Notes in Mathematics, vol. 236. Springer, pp. 1–120 (1971)

  5. Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Bruguières, A.: On a tannakian theorem due to Nori. Preprint http://www.math.univ-montp2.fr/bruguieres/ (2004)

  7. Caramello, O.: Theories, Sites, Toposes: Relating and Studying Mathematical Theories Through Topos-Theoretic ‘Bridges’. Oxford University Press, Oxford (2017)

    MATH  Google Scholar 

  8. Carboni, A., Vitale, E.: Regular and exact completions. J. Pure Appl. Algebra 125(1–3), 79–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choudhury, U., Gallauer Alves de Souza, M.: An isomorphism of motivic Galois groups. Adv. Math. 313, 470–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge Cocycles Motives and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, pp. 101–228. Springer (1982)

  11. Huber, A., Müller-Stach, S.: Periods and Nori Motives, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2017)

    MATH  Google Scholar 

  12. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 1, 2. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  13. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Category Theory, Lecture Notes in Mathematics, vol. 1488, pp. 413–492. Springer (1991)

  14. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kontsevich, M., Zagier, D.: Periods. In: Mathematics Unlimited 2001 and Beyond, pp. 771–808. Springer (2001)

  16. Lack, S.: A note on the exact completion of a regular category, and its infinitary generalizations. Theory Appl. Categ. 5(3), 70–80 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Lafforgue, L.: L’indépendence de \(\ell \) de la cohomologie \(\ell \)-adique et la correspondance de Langlands sont-elles des équivalences de Morita entre topos classifiants?, notes of a talk given at the “Logique catégorique” seminar of the Université Paris 7. http://www.ihes.fr/~lafforgue/math/ExposeParisVII.pdf (2013)

  18. Levine, M.: Mixed motives. In: Friedlander, E.M., Grayson, D.R. (eds.) Part II. 5 of Vol. 1 of the Handbook of K-Theory. Springer, Berlin (2005)

    Google Scholar 

  19. Lane, S.Mac, Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, Berlin (1992)

    MATH  Google Scholar 

  20. Makkai, M., Reyes, G.: First-Order Categorical Logic Lecture Notes in Mathematics, vol. 611. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  21. Nori, M.: Lectures on mixed motives at TIFR (written by N. Fakhruddin), Mumbai (2000)

  22. Saavedra Rivano, N.: Catégories Tannakiennes, Lecture Notes in Mathematics, vol. 265. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  23. von Wangenheim, J.: Nori-Motive und Tannaka-Theorie. arXiv:1111.5146 [math.AG] (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Caramello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbieri-Viale, L., Caramello, O. & Lafforgue, L. Syntactic categories for Nori motives. Sel. Math. New Ser. 24, 3619–3648 (2018). https://doi.org/10.1007/s00029-018-0425-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0425-z

Mathematics Subject Classification

Navigation