Skip to main content

Advertisement

Log in

Distribution patterns of bacterial communities and their potential link to variable viral lysis in temperate freshwater reservoirs

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Man-made reservoirs which receive substantial inputs of terrestrial organic matter are characterized by physiologically diverse and distinct bacterial communities. Here we examined bacterial community structure using Illumina MiSeq sequencing of 16S rRNA genes and evaluated the potential role of viruses in influencing them in two productive freshwater reservoirs namely, Villerest and Grangent (Central France). Two dimensional non-metric multidimensional scaling analyses indicated that bacterial communities in both reservoirs were structurally different in time and space, with Villerest harboring more diverse communities than Grangent reservoir. The bacterial communities in both reservoirs were dominated by hgcI clade (Actinobacteria) and Limnohabitans (Betaproteobacteria) which are known to have adaptive life strategies towards top-down mechanisms and resource utilization. In Villerest, thermal stratification of water column which resulted in temporary anoxia especially during summer promoted the occurrence of anoxygenic phototrophic and methanotrophic bacteria. Overall, low bacterial richness which was linked to viral lytic infection possibly suggests that a relatively small number of highly active bacterial populations sustained high bacterial activity and viral abundances. Weighted UniFrac analysis indicated that a minimum threshold viral infection and virus-to-bacteria ratio (serve as a proxy) of 10% and 10, respectively, is required to exert its impact on phylogenetic structure of bacterial community. Therefore depending on the levels of viral infection we suggest that viruses at times can prevail over other trophic or top-down factors in shaping and structuring bacterial communities in such man-made artificial freshwater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allgaier M, Grossart HP (2006) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72:3489–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auguet JC, Montanié H, Hartmann HJ, Lebaron P, Casamayor EO, Catala P, Delmas D (2009) Potential effect of freshwater virus on the structure and activity of bacterial communities in the Marennes-Oleron Bay (France). Microb Ecol 57:295–306

    CAS  PubMed  Google Scholar 

  • Avila MP, Staehr PA, Barbosa FAR, Chartone-Souza E, Nascimento AMA (2017) Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic forest. FEMS Microb Ecol 93:1–7

    CAS  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio PA, Roland F (2011) Carbon emission from hydroelectric reservoirs liked to reservoir age and latitude. Nat Geosci 4:593–596

    CAS  Google Scholar 

  • Berdjeb L, Pollet T, Domaizon I, Jacquet S (2011) Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microbiol 11:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier T, del Giorgio PA (2007) Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297

    CAS  PubMed  Google Scholar 

  • Brussaard C, Payet JP, Winter C et al (2010) Quantification of aquatic viruses by flow cytometry. In: Wilhelm SW, Weinbauer MG, Suttle C (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Texas, pp 102–109

    Google Scholar 

  • Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen. Limnol Oceanogr 10:135–140

    CAS  Google Scholar 

  • Chow TCE, Kim DY, Sachdeva R, Caron DA, Fuhrman JA (2014) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J 8:816–829

    CAS  PubMed  Google Scholar 

  • Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics to freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT et al (2014) Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J 8:2503–2516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden CJ, Beman JM (2016) Microbial diversity and community structure along a lake elevation gradient in Yosemite national park, California, USA. Environ Microbiol 18:1782–1791

    PubMed  Google Scholar 

  • Iliev I, Yahubyan G, Marhova M, Apostolova E, Gozmanova M, Gecheva G, Kostadinova S, Ivanova A, Baev V (2017) Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J Basic Microbiol 57:669–679

    CAS  PubMed  Google Scholar 

  • Jardillier L, Boucher D, Personnic S, Jacquet S, Thénot A, Sargos D, Amblard C, Debroas D (2005) Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microb Ecol 53:429–443

    CAS  Google Scholar 

  • Jezbera J, Hornák K, Šimek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339

    PubMed  Google Scholar 

  • Jezbera J, Jezberova J, Koll U, Hornák K, Šimek K, Hahn MW (2012) Contrasting trends in the distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microb Ecol 81:467–479

    CAS  Google Scholar 

  • Kennedy K, Hall MW, Lynch MD, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol 80:5717–5722

    PubMed  PubMed Central  Google Scholar 

  • Keshri J, Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T (2017) Differential impact of lytic viruses on the taxonomical resolution of freshwater bacterioplankton community structure. Water Res 124:129–138

    CAS  PubMed  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microb Ecol 39:91–100

    CAS  Google Scholar 

  • Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microb Rev 39:854–870

    Google Scholar 

  • Kosten S, Roland F, Da Motta Marques DML, Van Nes EH, Mazzeo N, da Sternberg LSL, Scheffer M, Cole JJ (2010) Climate-dependent CO2 emissions from lakes. Global Biogeochem Cycl 24:GB2007

    Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Li S, Bronner G, Lepère C, Kong F, Shi X (2017) Temporal and spatial variations in the composition of freshwater photosynthetic picoeukaryotes revealed by MiSeq sequencing from flow cytometry sorted samples. Environ Microbiol 19:2286–2300

    CAS  PubMed  Google Scholar 

  • Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    PubMed  PubMed Central  Google Scholar 

  • Llirós M, Inceoğlu Ö, García-Armisen T, Anzil A, Leporcq B, Pigneur L-M et al (2014) Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One 9:e116145

    PubMed  PubMed Central  Google Scholar 

  • Lønborg C, Søndergaard M (2009) Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuar Coast Shelf Sci 81:513–520

    Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371

    Google Scholar 

  • Mahaffey C, Benitez-Nelson CR, Bidigare RR, Rii Y, Karl DM (2008) Nitrogen dynamics within a wind-driven eddy. Deep Sea Res II 55:1398–1411

    Google Scholar 

  • Martinez Arbizu P (2017) PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.0.1

  • Pascault N, Roux S, Artigas J, Pesce S, Leloup J, Tadonleke RD, Debroas D, Bouchez A, Humbert JF (2014) A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole. FEMS Microb Ecol 90:563–574

    CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeep Ram AS, Sime-Ngando T (2008) Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J 2:498–509

    PubMed  Google Scholar 

  • Pradeep Ram AS, Sabart M, Latour D, Sime-Ngando T (2009) Low effect of viruses on bacteria in deep anoxic water and sediment of a productive reservoir. Aquat Microb Ecol 55:255–265

    Google Scholar 

  • Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T (2015) Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments. FEMS Microb Ecol 91:1–12

    CAS  Google Scholar 

  • Pradeep Ram AS, Chaibi-Slouma S, Keshri J, Colombet J, Sime-Ngando T (2016a) Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microb Ecol 72:347–358

    CAS  PubMed  Google Scholar 

  • Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T (2016b) Viral regulation of prokaryotic carbon metabolism in a hypereutrophic freshwater reservoir ecosystem (Villerest, France). Front Microbiol 7:81

    PubMed  PubMed Central  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA, a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabart M, Pobel D, Latour D, Robin J, Salençon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272

    CAS  PubMed  Google Scholar 

  • Salcher MM (2014) Same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87

    Google Scholar 

  • Salcher MM, Pernthaler J, Posch T (2010) Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an ologomesotrophic lake. Limnol Oceanogr 55:846–856

    CAS  Google Scholar 

  • Salcher MM, Posch T, Pernthaler J (2013) In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907

    CAS  PubMed  Google Scholar 

  • Sandaa R-A, Gomez-Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG et al (2009) Viral control of bacterial biodiversity—evidence from a nutrient enriched marine mesocosm experiment. Environ Microbiol 11:2585–2597

    CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwalbach M, Hewson I, Fuhrman J (2004) Viral effects on bacterial community composition in marine plankton microcosms. Aquat Microb Ecol 34:117–127

    Google Scholar 

  • Šimek K, Kasalický V, Jezbera J, Jezberova J, Hejzlar J, Hahn MW (2010) Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639

    PubMed  Google Scholar 

  • Storesund JE, Erga SR, Ray JL, Thingstad TF, Sandaa RA (2015) Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord. FEMS Microb Ecol 91:fiv076

    Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Google Scholar 

  • Weinbauer MG, Winter C, Hofle MG (2002) Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat Microb Ecol 27:103–110

    Google Scholar 

  • Weinbauer MG, Hornak K, Jezbera J, Nedoma J, Dolan JR, Šimek K (2007) Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol 9:777–788

    CAS  PubMed  Google Scholar 

  • Wetzel RG (1990) Reservoir ecosystems: conclusions and speculations. In: Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology. Wiley, New York, pp 227–238

    Google Scholar 

  • Wetzel RG, Likens GE (1995) Limnological analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Winter C, Smit A, Herndl GJ, Weinbauer MG (2005) Linking bacterial abundance with viral abundance and prokaryotic activity. Limnol Oceanogr 50:968–977

    Google Scholar 

  • Yu Z, Yang J, Amalfatino S, Yu X, Liu L (2014) Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir. Sci Rep 4:5821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat Theory Methods 34:2123–2131

    Google Scholar 

  • Zhang HH, Chen SN, Huang TL, Ma WX, Xu JL, Sun X (2015) Vertical distribution of bacterial community diversity and water quality during the reservoir thermal stratification. Int J Public Health 12:6933–6945

    Google Scholar 

Download references

Acknowledgements

JK was supported by a postdoctoral fellowship from the Université Clermont Auvergne (formerly Université Blaise Pascal), Clermont Ferrand (France). We thank J. Colombet and F. Perriere for their technical assistance in flow cytometry and nutrient analysis respectively. We are grateful to the members of ATHOS Environnement, Clermont Ferrand for their technical support and in the collection of water samples. Our special thanks to Dr. Emma Rochelle-Newall (French National Research Institute for Sustainable Development, IRD) for her constructive comments and English corrections on the manuscript. We appreciate two anonymous reviewers for their time, effort and valuable contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angia Sriram Pradeep Ram.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep Ram, A.S., Keshri, J. & Sime-Ngando, T. Distribution patterns of bacterial communities and their potential link to variable viral lysis in temperate freshwater reservoirs. Aquat Sci 81, 72 (2019). https://doi.org/10.1007/s00027-019-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0669-5

Keywords

Navigation