Skip to main content

Advertisement

Log in

Alzheimer’s pathogenic mechanisms and underlying sex difference

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

AD is a neurodegenerative disease, and its frequency is often reported to be higher for women than men: almost two-thirds of patients with AD are women. One prevailing view is that women live longer than men on average of 4.5 years, plus there are more women aged 85 years or older than men in most global subpopulations; and older age is the greatest risk factor for AD. However, the differences in the actual risk of developing AD for men and women of the same age is difficult to assess, and the findings have been mixed. An increasing body of evidence from preclinical and clinical studies as well as the complications in estimating incidence support the sex-specific biological mechanisms in diverging AD risk as an important adjunct explanation to the epidemiologic perspective. Although some of the sex differences in AD prevalence are due to differences in longevity, other distinct biological mechanisms increase the risk and progression of AD in women. These risk factors include (1) deviations in brain structure and biomarkers, (2) psychosocial stress responses, (3) pregnancy, menopause, and sex hormones, (4) genetic background (i.e., APOE), (5) inflammation, gliosis, and immune module (i.e., TREM2), and (6) vascular disorders. More studies focusing on the underlying biological mechanisms for this phenomenon are needed to better understand AD. This review presents the most recent data in sex differences in AD—the gateway to precision medicine, therefore, shaping expert perspectives, inspiring researchers to go in new directions, and driving development of future diagnostic tools and treatments for AD in a more customized way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alzheimer’s disease facts and figures (2020) Alzheimers Dement 16(3):391–460

  2. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37

    PubMed  PubMed Central  Google Scholar 

  3. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):40

    PubMed  PubMed Central  Google Scholar 

  4. Tublin JM, Adelstein JM, del Monte F, Combs CK, Wold LE (2019) Getting to the heart of Alzheimer disease. Circ Res 124(1):142–149

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao N, Ren Y, Yamazaki Y, Qiao W, Li F, Felton LM, Mahmoudiandehkordi S, Kueider-Paisley A, Sonoustoun B, Arnold M (2020) Alzheimer’s risk factors age, APOE genotype, and sex drive distinct molecular pathways. Neuron 106:727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burke SL, Hu T, Fava NM, Li T, Rodriguez MJ, Schuldiner KL, Burgess A, Laird A (2019) Sex differences in the development of mild cognitive impairment and probable Alzheimer’s disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging 31(2):140–164

    PubMed  Google Scholar 

  7. Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, Bush WS, Gifford KA, Chibnik LB, Mukherjee S, De Jager PL (2019) Sex differences in the genetic predictors of Alzheimer’s pathology. Brain 142(9):2581–2589

    PubMed  PubMed Central  Google Scholar 

  8. Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Dimech AS, Chadha AS, Baracchi F, Girouard H, Misoch S, Giacobini E (2018) Sex differences in Alzheimer disease—the gateway to precision medicine. Nat Rev Neurol 14(8):457–469

    PubMed  Google Scholar 

  9. Gur E, Fertan E, Kosel F, Wong AA, Balci F, Brown RE (2019) Sex differences in the timing behavior performance of 3xTg-AD and wild-type mice in the peak interval procedure. Behav Brain Res 360:235–243

    PubMed  Google Scholar 

  10. Koran MEI, Wagener M, Hohman TJ (2017) Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav 11(1):205–213

    PubMed  PubMed Central  Google Scholar 

  11. Laws KR, Irvine K, Gale TM (2018) Sex differences in Alzheimer’s disease. Curr Opin Psychiatry 31(2):133–139

    PubMed  Google Scholar 

  12. Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Varsavsky I, Osorio RS, Pupi A, Vallabhajosula S, Isaacson RS (2017) Sex differences in Alzheimer risk: brain imaging of endocrine vs chronologic aging. Neurology 89(13):1382–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tensil M, Hessler JB, Gutsmiedl M, Riedl L, Grimmer T, Diehl-Schmid J (2018) Sex differences in neuropsychological test performance in Alzheimer’s disease and the influence of the ApoE genotype. Alzheimer Dis Assoc Disord 32(2):145–149

    PubMed  Google Scholar 

  14. Toro CA, Zhang L, Cao J, Cai D (2019) Sex differences in Alzheimer’s disease: understanding the molecular impact. Brain Res 1719:194–207. https://doi.org/10.1016/j.brainres.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold M, Nho K, Kueider-Paisley A, Massaro T, Huynh K, Brauner B, MahmoudianDehkordi S, Louie G, Moseley MA, Thompson JW (2020) Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nat Commun 11(1):1–12

    Google Scholar 

  16. Bundy JL, Vied C, Badger C, Nowakowski RS (2019) Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer’s disease: a multi-omic analysis. J Comp Neurol 527(2):462–475

    CAS  PubMed  Google Scholar 

  17. Chene G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, Seshadri S (2015) Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimers Dement 11(3):310–320

    PubMed  Google Scholar 

  18. Fan CC, Banks SJ, Thompson WK, Chen C-H, McEvoy LK, Tan CH, Kukull W, Bennett DA, Farrer LA, Mayeux R (2020) Sex-dependent autosomal effects on clinical progression of Alzheimer’s disease. Brain 143(7):2272–2280

    PubMed  PubMed Central  Google Scholar 

  19. Fisher DW, Bennett DA, Dong HX (2018) Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiol Aging 70:308–324

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gamache J, Yun Y, Chiba-Falek O (2020) Sex-dependent effect of APOE on Alzheimer’s disease and other age-related neurodegenerative disorders. Dis Model Mech 13(8):dmm045211

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL (2019) Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 127:38–55

    CAS  PubMed  Google Scholar 

  22. Giacobini E, Pepeu G (2018) Sex and gender differences in the brain cholinergic system and in the response to therapy of Alzheimer disease with cholinesterase inhibitors. Curr Alzheimer Res 15(11):1077–1084

    CAS  PubMed  Google Scholar 

  23. Hou X, Adeosun SO, Zhang Q, Barlow B, Brents M, Zheng B, Wang J (2015) Differential contributions of ApoE4 and female sex to BACE1 activity and expression mediate Aβ deposition and learning and memory in mouse models of Alzheimer’s disease. Front Aging Neurosci 7:207

    PubMed  PubMed Central  Google Scholar 

  24. Li RN, Singh M (2014) Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrin 35(3):385–403

    Google Scholar 

  25. Matyi J, Tschanz JT, Rattinger GB, Sanders C, Vernon EK, Corcoran C, Kauwe JSK, Buhusi M (2017) Sex differences in risk for Alzheimer’s disease related to neurotrophin gene polymorphisms: the Cache County Memory Study. J Gerontol a-Biol 72(12):1607–1613

    CAS  Google Scholar 

  26. Paranjpe MD, Belonwu S, Wang JK, Oskotsky T, Gupta A, Taubes A, Zalocusky K, Paranjpe I, Glicksberg BS, Huang Y (2020) Sex-specific cross tissue meta-analysis identifies immune dysregulation in women with Alzheimer’s disease. bioRxiv

  27. Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95(1–2):671–680

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Podcasy JL, Epperson CN (2016) Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 18(4):437

    PubMed  PubMed Central  Google Scholar 

  29. Riedel BC, Thompson PM, Brinton RD (2016) Age, APOE and sex: triad of risk of Alzheimer’s disease. J Steroid Biochem 160:134–147

    CAS  Google Scholar 

  30. Sampedro F, Vilaplana E, de Leon MJ, Alcolea D, Pegueroles J, Montal V, Carmona-Iragui M, Sala I, Sanchez-Saudinos MB, Anton-Aguirre S, Morenas-Rodriguez E, Camacho V, Falcon C, Pavia J, Ros D, Clarimon J, Blesa R, Lleo A, Fortea J (2015) APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget 6(29):26663–26674

    PubMed  PubMed Central  Google Scholar 

  31. Shinohara M, Murray ME, Frank RD, Shinohara M, DeTure M, Yamazaki Y, Tachibana M, Atagi Y, Davis MD, Liu CC, Zhao N, Painter MM, Petersen RC, Fryer JD, Crook JE, Dickson DW, Bu G, Kanekiyo T (2016) Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol 132(2):225–234

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Touma C, Ambree O, Gortz N, Keyvani K, Lewejohann L, Palme R, Paulus W, Schwarze-Eicker K, Sachser N (2004) Age- and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 25(7):893–904

    CAS  PubMed  Google Scholar 

  33. Fiest KM, Roberts JI, Maxwell CJ, Hogan DB, Smith EE, Frolkis A, Cohen A, Kirk A, Pearson D, Pringsheim T, Venegas-Torres A, Jette N (2016) The prevalence and incidence of dementia due to Alzheimer’s disease: a systematic review and meta-analysis. Can J Neurol Sci 43:S51–S82

    PubMed  Google Scholar 

  34. Miech RA, Breitner JCS, Zandi PP, Khachaturian AS, Anthony JC, Mayer L, Grp CCS (2002) Incidence of AD may decline in the early 90s for men, later for women—the Cache County study. Neurology 58(2):209–218

    CAS  PubMed  Google Scholar 

  35. Zandi PP, Carlson MC, Plassman BL, Welsh-Bohmer KA, Mayer LS, Steffens DC, Breitner JCS, Investig CCMS (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women—the Cache County Study. Jama J Am Med Assoc 288(17):2123–2129

    CAS  Google Scholar 

  36. Fitzpatrick AL, Kuller LH, Ives DG, Lopez OL, Jagust W, Breitner JCS, Jones B, Lyketsos C, Dulberg C (2004) Incidence and prevalence of dementia in the cardiovascular health study. J Am Geriatr Soc 52(2):195–204

    PubMed  Google Scholar 

  37. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley L, Larson EB (2002) Dementia and Alzheimer disease incidence—a prospective cohort study. Arch Neurol 59(11):1737–1746

    PubMed  Google Scholar 

  38. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012

    PubMed  PubMed Central  Google Scholar 

  39. Sando SB, Melquist S, Cannon A, Hutton M, Sletvold O, Saltvedt I, White LR, Lydersen S, Aasly J (2008) Risk-reducing effect of education in Alzheimer’s disease. Int J Geriatr Psych 23(11):1156–1162

    Google Scholar 

  40. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB (2007) Prevalence of dementia in the united states: the aging, demographics, and memory study. Neuroepidemiology 29(1–2):125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA (2001) Is the risk of developing Alzheimer’s disease greater for women than for men? Am J Epidemiol 153(2):132–136

    CAS  PubMed  Google Scholar 

  42. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794

    PubMed  Google Scholar 

  43. Pusswald G, Lehrner J, Hagmann M, Dal-Bianco P, Benke T, Loitfelder M, Marksteiner J, Mosbacher J, Ransmayr G, Sanin G, Schmidt R, Grp PS (2015) Gender-specific differences in cognitive profiles of patients with Alzheimer’s disease: results of the prospective dementia registry Austria (PRODEM-Austria). J Alzheimers Dis 46(3):631–637

    PubMed  Google Scholar 

  44. Vemuri P, Knopman DS, Lesnick TG, Przybelski SA, Mielke MM, Graff-Radford J, Murray ME, Roberts RO, Vassilaki M, Lowe VJ, Machulda M, Jones DT, Petersen RC, Jack CR (2017) Evaluation of amyloid protective factors and Alzheimer disease neurodegeneration protective factors in elderly individuals. JAMA Neurol 74(6):718–726

    PubMed  PubMed Central  Google Scholar 

  45. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai LH (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570(7761):332–337

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Elbejjani M, Fuhrer R, Abrahamowicz M, Mazoyer B, Crivello F, Tzourio C, Dufouil C (2015) Depression, depressive symptoms, and rate of hippocampal atrophy in a longitudinal cohort of older men and women. Psychol Med 45(9):1931–1944

    CAS  PubMed  Google Scholar 

  47. Hua X, Hibar DP, Lee S, Toga AW, Jack CR, Weiner MW, Thompson PM, A.s.D.N. Initi (2010) Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans. Neurobiol Aging 31(8):1463–1480

    PubMed  PubMed Central  Google Scholar 

  48. Ardekani BA, Convit A, Bachman AH (2016) Analysis of the MIRIAD data shows sex differences in hippocampal atrophy progression. J Alzheimers Dis 50(3):847–857

    PubMed  Google Scholar 

  49. Gallart-Palau X, Lee BST, Adav SS, Qian JR, Serra A, Park JE, Lai MKP, Chen CP, Kalaria RN, Sze SK (2016) Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer’s disease with cerebrovascular disease. Mol Brain 9:27. https://doi.org/10.1186/s13041-016-0205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fallon IP, Tanner MK, Greenwood BN, Baratta MV (2020) Sex differences in resilience: experiential factors and their mechanisms. Eur J Neurosci 52(1):2530–2547

    PubMed  Google Scholar 

  51. Hodes GE, Epperson CN (2019) Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry 86(6):421–432

    PubMed  Google Scholar 

  52. Eid RS, Gobinath AR, Galea LAM (2019) Sex differences in depression: insights from clinical and preclinical studies. Prog Neurobiol 176:86–102

    PubMed  Google Scholar 

  53. Labaka A, Goni-Balentziaga O, Lebena A, Perez-Tejada J (2018) Biological sex differences in depression: a systematic review. Biol Res Nurs 20(4):383–392

    PubMed  Google Scholar 

  54. Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, Mallampalli MP, Mormino EC, Scott L, Yu WH, Maki PM, Mielke MM (2018) Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. Alzheimers Dement 14(9):1171–1183

    PubMed  PubMed Central  Google Scholar 

  55. Goveas JS, Hogan PE, Kotchen JM, Smoller JW, Denburg NL, Manson JE, Tummala A, Mysiw WJ, Ockene JK, Woods NF, Espeland MA, Wassertheil-Smoller S (2012) Depressive symptoms, antidepressant use, and future cognitive health in postmenopausal women: the Women’s Health Initiative Memory Study. Int Psychogeriatr 24(8):1252–1264

    PubMed  PubMed Central  Google Scholar 

  56. Underwood EA, Davidson HP, Azam AB, Tierney MC (2019) Sex differences in depression as a risk factor for Alzheimer’s disease: a systematic review. Innov Aging 3(2):igz015

    PubMed  PubMed Central  Google Scholar 

  57. Cedernaes J, Osorio RS, Varga AW, Kam K, Schioth HB, Benedict C (2017) Candidate mechanisms underlying the association between sleep–wake disruptions and Alzheimer’s disease. Sleep Med Rev 31:102–111

    PubMed  Google Scholar 

  58. Vanderheyden WM, Lim MM, Musiek ES, Gerstner JR (2018) Alzheimer’s disease and sleep-wake disturbances: amyloid astrocytes, and animal models. J Neurosci 38(12):2901–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lloret MA, Cervera-Ferri A, Nepomuceno M, Monllor P, Esteve D, Lloret A (2020) Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker. Int J Mol Sci 21(3):1168

    CAS  PubMed Central  Google Scholar 

  60. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Csernansky JG, Dong HX, Fagan AM, Wang L, Xiong CJ, Holtzman DM, Morris JC (2006) Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiat 163(12):2164–2169

    PubMed  Google Scholar 

  62. Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, Desouza EB (1995) Displacement of corticotropin-releasing factor from its binding-protein as a possible treatment for Alzheimers-disease. Nature 378(6554):284–287

    CAS  PubMed  Google Scholar 

  63. DeSouza EB (1995) Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrino 20(8):789–819

    CAS  Google Scholar 

  64. Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ (2011) Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging 32(4):604–613

    CAS  PubMed  Google Scholar 

  65. Poling MC, Kauffman AS (2013) Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrin 34(1):3–17

    CAS  Google Scholar 

  66. Jayaraman A, Carroll JC, Morgan TE, Lin S, Zhao L, Arimoto JM, Murphy MP, Beckett TL, Finch CE, Brinton RD, Pike CJ (2012) 17beta-estradiol and progesterone regulate expression of beta-amyloid clearance factors in primary neuron cultures and female rat brain. Endocrinology 153(11):5467–5479

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosario ER, Pike CJ (2008) Androgen regulation of beta-amyloid protein and the risk of Alzheimer’s disease. Brain Res Rev 57(2):444–453

    CAS  PubMed  Google Scholar 

  68. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ (2007) Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci 27(48):13357–13365

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Song YJ, Li SR, Li XW, Chen X, Wei ZX, Liu QS, Cheng Y (2020) The effect of estrogen replacement therapy on Alzheimer’s disease and parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci 14:157

    PubMed  PubMed Central  Google Scholar 

  70. Uddin MS, Rahman MM, Jakaria M, Rahman MS, Hossain MS, Islam A, Ahmed M, Mathew B, Omar UM, Barreto GE, Ashraf GM (2020) Estrogen signaling in Alzheimer’s disease: molecular insights and therapeutic targets for Alzheimer’s dementia. Mol Neurobiol 57:2654–2670

    CAS  PubMed  Google Scholar 

  71. Zheng H, Xu H, Uljon SN, Gross R, Hardy K, Gaynor J, Lafrancois J, Simpkins J, Refolo LM, Petanceska S, Wang R, Duff K (2002) Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem 80(1):191–196

    CAS  PubMed  Google Scholar 

  72. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19(3):197–209

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fox M, Berzuini C, Knapp LA, Glynn LM (2018) Women’s pregnancy life history and Alzheimer’s risk: can immunoregulation explain the link? Am J Alzheimers Dis 33(8):516–526

    Google Scholar 

  74. Geerlings MI, Ruitenberg A, Witteman JCM, van Swieten JC, Hofman A, van Duijn CM, Breteler MMB, Launer LJ (2001) Reproductive period and risk of dementia in postmenopausal women. JAMA J Am Med Assoc 285(11):1475–1481

    CAS  Google Scholar 

  75. Bove R, Secor E, Chibnik LB, Barnes LL, Schneider JA, Bennett DA, De Jager PL (2014) Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82(3):222–229

    PubMed  PubMed Central  Google Scholar 

  76. Rocca WA (2011) Surgical menopause and increased risk of cognitive impairment and dementia—a protective role for estrogen? Biol Reprod 85:97

    Google Scholar 

  77. Rocca WA, Bower JH, Maraganore DM, Ahlskog JE, Grossardt BR, de Andrade M, Melton LJ (2007) Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69(11):1074–1083

    CAS  PubMed  Google Scholar 

  78. Petanceska SS, Nagy V, Frail D, Gandy S (2000) Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer’s amyloid beta peptides in brain. Exp Gerontol 35(9–10):1317–1325

    CAS  PubMed  Google Scholar 

  79. Levin-Allerhand JA, Lominska CE, Wang J, Smith JD (2002) 17Alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis 4(6):449–457

    CAS  PubMed  Google Scholar 

  80. Golub MS, Germann SL, Mercer M, Gordon MN, Morgan DG, Mayer LP, Hoyer PB (2008) Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiol Aging 29(10):1512–1523

    CAS  PubMed  Google Scholar 

  81. Green PS, Bales K, Paul S, Bu GJ (2005) Estrogen therapy fails to alter amyloid deposition in the PDAPP model of Alzheimer’s disease. Endocrinology 146(6):2774–2781

    CAS  PubMed  Google Scholar 

  82. Gillett MJ, Martins RN, Clarnette RM, Chubb SAP, Bruce DG, Yeap BB (2003) Relationship between testosterone, sex hormone binding globulin and plasma amyloid beta peptide 40 in older men with subjective memory loss or dementia. J Alzheimers Dis 5(4):267–269

    CAS  PubMed  Google Scholar 

  83. Paoletti AM, Congia S, Lello S, Tedde D, Orru M, Pistis M, Pilloni M, Zedda P, Loddo A, Melis GB (2004) Low androgenization index in elderly women and elderly men with Alzheimer’s disease. Neurology 62(2):301–303

    CAS  PubMed  Google Scholar 

  84. Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, Resnick SM (2004) Free testosterone and risk for Alzheimer disease in older men. Neurology 62(2):188–193

    CAS  PubMed  Google Scholar 

  85. Ramsden M, Nyborg AC, Murphy MP, Chang L, Stanczyk FZ, Golde TE, Pike CJ (2003) Androgens modulate beta-amyloid levels in male rat brain. J Neurochem 87(4):1052–1055

    CAS  PubMed  Google Scholar 

  86. McAllister C, Long JG, Bowers A, Walker A, Cao P, Honda SI, Harada N, Staufenbiel M, Shen Y, Li RN (2010) Genetic targeting aromatase in male amyloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 30(21):7326–7334

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Craig MC, Maki PM, Murphy DGM (2005) The women’s health initiative memory study: findings and implications for treatment. Lancet Neurol 4(3):190–194

    PubMed  Google Scholar 

  88. Miller VM, Naftolin F, Asthana S, Black DM, Brinton EA, Budoff MJ, Cedars MI, Dowling NM, Gleason CE, Hodis HN, Jayachandran M, Kantarci K, Lobo RA, Manson JE, Pal L, Santoro NF, Taylor HS, Harman SM (2019) The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause 26(9):1071–1084

    PubMed  PubMed Central  Google Scholar 

  89. Brinton RD (2008) The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 31(10):529–537

    CAS  PubMed  Google Scholar 

  90. Gillies GE, McArthur S (2010) Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 62(2):155–198

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marongiu R (2019) Accelerated ovarian failure as a unique model to study peri-menopause influence on Alzheimer’s disease. Front Aging Neurosci 11:242. https://doi.org/10.3389/fnagi.2019.00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vermunt L, Sikkes SA, Van Den Hout A, Handels R, Bos I, Van Der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I (2019) Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement 15(7):888–898

    PubMed  PubMed Central  Google Scholar 

  93. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao LZ, Luo WJ, Tsai RM, Spina S, Grinberg LT, Rojas JC, Gallardo G, Wang K, Oh JR, Robinson G, Finn MB, Jiang H, Sullivan PM, Baufeld C, Wood MW, Sutphen C, Mccue L, Xiong CJ, Del-Aguila JL, Morris JC, Cruchaga C, Fagan AM, Miller BL, Boxer AL, Seeley WW, Butovsky O, Barres BA, Paul SM, Holtzman DM (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673):523

    PubMed  PubMed Central  Google Scholar 

  94. Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, Wang L-S, Romero K, Arneric SP, Redolfi A (2017) Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol 74(10):1178–1189

    PubMed  PubMed Central  Google Scholar 

  95. Beydoun MA, Boueiz A, Abougergi MS, Kitner-Triolo MH, Beydoun HA, Resnick SM, O’Brien R, Zonderman AB (2012) Sex differences in the association of the apolipoprotein E epsilon 4 allele with incidence of dementia, cognitive impairment, and decline. Neurobiol Aging 33(4):720-731.e4

    CAS  PubMed  Google Scholar 

  96. Asthana S, Baker LD, Craft S, Stanczyk FZ, Veith RC, Raskind MA, Plymate SR (2001) High-dose estradiol improves cognition for women with AD—results of a randomized study. Neurology 57(4):605–612

    CAS  PubMed  Google Scholar 

  97. Henderson VW, Paganini-Hill A, Miller BL, Elble RJ, Reyes PF, Shoupe D, McCleary CA, Klein RA, Hake AM, Farlow MR (2000) Estrogen for Alzheimer’s disease in women—randomized, double-blind, placebo-controlled trial. Neurology 54(2):295–301

    CAS  PubMed  Google Scholar 

  98. Mulnard RI, Cotman CW, Kawas C, van Dyck CH, Sano H, Doody R, Koss E, Pfeiffer E, Jin S, Gamst A, Grundman M, Thomas R, Thal LJ, St ADC (2000) Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease—a randomized controlled trial. JAMA J Am Med Assoc 283(8):1007–1015

    CAS  Google Scholar 

  99. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones BN, Assaf AR, Jackson RD, Kotchen JM, Wassertheil-Smoller S, Wactawski-Wende J, Investigators W (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women—the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA J Am Med Assoc 289(20):2651–2662

    CAS  Google Scholar 

  100. Burger HG, Dudley EC, Robertson DM, Dennerstein L (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275

    CAS  PubMed  Google Scholar 

  101. Wang JM, Irwin RW, Brinton RD (2006) Activation of estrogen receptor alpha increases and estrogen receptor beta decreases apolipoprotein E expression in hippocampus in vitro and in vivo. Proc Natl Acad Sci USA 103(45):16983–16988

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yao J, Irwin R, Chen SH, Hamilton R, Cadenas E, Brinton RD (2012) Ovarian hormone loss induces bioenergetic deficits and mitochondrial beta-amyloid. Neurobiol Aging 33(8):1507–1521

    CAS  PubMed  Google Scholar 

  103. Reiman EM, Chen KW, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2005) Correlations between apolipoprotein E epsilon 4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 102(23):8299–8302

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Arnold M, Nho K, Kueider-Paisley A, Massaro T, Huynh K, Brauner B, MahmoudianDehkordi S, Louie G, Moseley MA, Thompson JW, John-Williams LS, Tenenbaum JD, Blach C, Chang R, Brinton RD, Baillie R, Han X, Trojanowski JQ, Shaw LM, Martins R, Weiner MW, Trushina E, Toledo JB, Meikle PJ, Bennett DA, Krumsiek J, Doraiswamy PM, Saykin AJ, Kaddurah-Daouk R, Kastenmuller G (2020) Sex and APOE epsilon4 genotype modify the Alzheimer’s disease serum metabolome. Nat Commun 11(1):1148

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, Troost J, Paliukhovich I, van der Kloet FM, Houwing-Duistermaat J, Vreeken RJ, Hankemeier T, Slagboom EP (2013) Lipidomics of familial longevity. Aging Cell 12(3):426–434

    CAS  PubMed  Google Scholar 

  106. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Romisch-Margl W, Lattka E, Gieger C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstrass K, Wichmann HE, Peters A, Suhre K, Li Y, Adamski J, Spector TD, Illig T, Wang-Sattler R (2012) Human serum metabolic profiles are age dependent. Aging Cell 11(6):960–967

    CAS  PubMed  Google Scholar 

  107. Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, Zierer J, Small KS, Mangino M, Messier H, Brewerton S, Turpaz Y, Perkins BA, Evans AM, Miller LA, Guo L, Caskey CT, Schork NJ, Garner C, Spector TD, Venter JC, Telenti A (2017) Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet 49(4):568–578

    CAS  PubMed  Google Scholar 

  108. Krumsiek J, Mittelstrass K, Do KT, Stuckler F, Ried J, Adamski J, Peters A, Illig T, Kronenberg F, Friedrich N, Nauck M, Pietzner M, Mook-Kanamori DO, Suhre K, Gieger C, Grallert H, Theis FJ, Kastenmuller G (2015) Gender-specific pathway differences in the human serum metabolome. Metabolomics 11(6):1815–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, Roemisch-Margl W, Polonikov A, Peters A, Theis FJ, Meitinger T, Kronenberg F, Weidinger S, Wichmann HE, Suhre K, Wang-Sattler R, Adamski J, Illig T (2011) Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet 7(8):e1002215

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tronson NC, Collette KM (2017) (Putative) Sex differences in neuroimmune modulation of memory. J Neurosci Res 95(1–2):472–486

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dzamba D, Harantova L, Butenko O, Anderova M (2016) Glial cells—the key elements of Alzheimer’s disease. Curr Alzheimer Res 13(8):894–911

    CAS  PubMed  Google Scholar 

  112. Kodama L, Gan L (2019) Do microglial sex differences contribute to sex differences in neurodegenerative diseases? Trends Mol Med 25(9):741–749

    PubMed  Google Scholar 

  113. Kodama L, Guzman E, Etchegaray JI, Li YQ, Sayed FA, Zhou L, Zhou YG, Zhan LH, Le D, Udeochu JC, Clelland CD, Cheng ZL, Yu GQ, Li QY, Kosik KS, Gan L (2020) Microglial microRNAs mediate sex-specific responses to tau pathology. Nat Neurosci 23(2):167

    CAS  PubMed  Google Scholar 

  114. Joint Keystone Symposia: Neurodegenerative Diseases: New Insights and Therapeutic Opportunities and Neural Environment in Disease: Glial Responses and Neuroinflammation. https://www.alzforum.org/news/conference-coverage/down-sex-boy-and-girl-microglia-respond-differently

  115. Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M (2019) Vascular cognitive impairment and dementia. J Am Coll Cardiol 73(25):3326–3344

    PubMed  PubMed Central  Google Scholar 

  116. Rius-Perez S, Tormos AM, Perez S, Talens-Visconti R (2018) Vascular pathology: cause or effect in Alzheimer disease? Neurologia 33(2):112–120

    CAS  PubMed  Google Scholar 

  117. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, Pachicano M, Joe E, Nelson AR, D’Orazio LM, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Reiman EM, Caselli RJ, Chui HLC, Julia TCW, Chen YN, Pa J, Conti PS, Law M, Toga AW, Zlokovic BV (2020) APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581(7806):70

    Google Scholar 

  119. Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and late-life mild cognitive impairment—a population-based study. Neurology 56(12):1683–1689

    CAS  PubMed  Google Scholar 

  120. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308(5728):1583–1587

    CAS  PubMed  Google Scholar 

  121. Appelros P, Stegmayr B, Terent A (2009) Sex differences in stroke epidemiology a systematic review. Stroke 40(4):1082–1090

    PubMed  Google Scholar 

  122. Seshadri S, Wolf PA (2007) Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol 6(12):1106–1114

    PubMed  Google Scholar 

  123. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA (2006) The lifetime risk of stroke—estimates from the Framingham Study. Stroke 37(2):345–350

    PubMed  Google Scholar 

  124. Mielke MM, Milic NM, Weissgerber TL, White WM, Kantarci K, Mosley TH, Windham BG, Simpson BN, Turner ST, Garovic VD (2016) Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders. Circ Cardiovasc Qual 9(2):S70–S76

    Google Scholar 

  125. Postma IR, Bouma A, Ankersmit IF, Zeeman GG (2014) Neurocognitive functioning following preeclampsia and eclampsia: a long-term follow-up study. Am J Obstet Gynecol 211(1):37.e1-37.e9

    Google Scholar 

  126. Hakim AM (2019) Small vessel disease. Front Neurol 10:1020

    PubMed  PubMed Central  Google Scholar 

  127. Yin ZG, Wang QS, Yu K, Wang WW, Lin H, Yang ZH (2018) Sex differences in associations between blood lipids and cerebral small vessel disease. Nutr Metab Cardiovasc Dis 28(1):28–34

    CAS  PubMed  Google Scholar 

  128. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM (2008) Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke 39(10):2712–2719

    PubMed  Google Scholar 

  129. Lahoz C, Schaefer EJ, Cupples LA, Wilson PWF, Levy D, Osgood D, Parpos S, Pedro-Botet J, Daly JA, Ordovas JM (2001) Apolipoprotein E genotype and cardiovascular disease in the Framingham Heart Study. Atherosclerosis 154(3):529–537

    CAS  PubMed  Google Scholar 

  130. Rannikmae K, Kalaria RN, Greenberg SM, Chui HC, Schmitt FA, Samarasekera N, Al-Shahi Salman R, Sudlow CL (2014) APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Psychiatry 85(3):300–305

    PubMed  Google Scholar 

  131. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cacciottolo M, Christensen A, Moser A, Liu JH, Pike CJ, Smith C, Ladu MJ, Sullivan PM, Morgan TE, Dolzhenko E, Charidimou A, Wahlund LO, Wiberg MK, Shams S, Chiang GCY, Finch CE (2016) The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer’s disease of humans and mice. Neurobiol Aging 37:47–57

    CAS  PubMed  Google Scholar 

  133. Koebele SV, Bimonte-Nelson HA (2016) Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas 87:5–17

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Van Kempen TA, Milner TA, Waters EM (2011) Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res 1379:176–187

    PubMed  PubMed Central  Google Scholar 

  135. Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133(2):155–175

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health [Grant number R01AG064798, R01HL140562, R01AG061288, R03AG063287, R21AG066090, R01NS110687]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Montagne, A. & Zhao, Z. Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell. Mol. Life Sci. 78, 4907–4920 (2021). https://doi.org/10.1007/s00018-021-03830-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03830-w

Keywords

Navigation