Skip to main content

Advertisement

Log in

miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 

Similar content being viewed by others

Data availability

Upon reasonable request.

References

  1. Delgado-López PD, Corrales-García EM (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18:1062–1071

    Article  Google Scholar 

  2. Gaspar TB, Sá A, Lopes JM et al (2018) Telomere maintenance mechanisms in cancer. Genes (Basel) 9(5):241. https://doi.org/10.3390/genes9050241

    Article  CAS  Google Scholar 

  3. Whittemore K, Vera E, Martínez-Nevado E et al (2019) Telomere shortening rate predicts species life span. Proc Natl Acad Sci USA 116:15122–15127. https://doi.org/10.1073/pnas.1902452116

    Article  CAS  PubMed  Google Scholar 

  4. De Lange T (1994) Activation of telomerase in a human tumor. Proc Natl Acad Sci USA 91:2882–2885

    Article  Google Scholar 

  5. Chiba K, Lorbeer FK, Shain AH et al (2017) Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 80(357):1416–1420. https://doi.org/10.1126/science.aao0535

    Article  CAS  Google Scholar 

  6. Bai Y, Lathia JD, Zhang P et al (2014) Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia 62:1687–1698. https://doi.org/10.1002/glia.22708

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miyazaki T, Pan Y, Joshi K et al (2012) Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res 18:1268–1280. https://doi.org/10.1158/1078-0432.CCR-11-1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bejarano L, Schuhmacher AJ, Méndez M et al (2017) Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell 32:590–607.e4. https://doi.org/10.1016/j.ccell.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  9. Polito F, Cucinotta M, Abbritti RV et al (2018) Silencing of telomere-binding protein adrenocortical dysplasia (ACD) homolog enhances radiosensitivity in glioblastoma cells. Transl Res 202:99–108. https://doi.org/10.1016/j.trsl.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  10. Gao K, Li G, Qu Y et al (2016) TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget 7(8):8712–8725. https://doi.org/10.18632/oncotarget.6007

    Article  PubMed  Google Scholar 

  11. Kondo Y, Kondo S, Tanaka Y et al (1998) Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 16:2243–2248. https://doi.org/10.1038/sj.onc.1201754

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  13. ZHANG Y, CRUICKSHANKS N, PAHUSKI M, et al (2017) Noncoding RNAs in Glioblastoma. In: Glioblastoma. Codon Publications, pp 95–130

  14. Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5

    Article  CAS  Google Scholar 

  15. Esquela-Kerscher A, Slack FJ (2006) Oncomirs–MicroRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  Google Scholar 

  16. Vinchure OS, Sharma V, Tabasum S et al (2019) Polycomb complex mediated epigenetic reprogramming alters TGF-β signaling via a novel EZH2/miR-490/TGIF2 axis thereby inducing migration and EMT potential in glioblastomas. Int J Cancer 145(5):1254–1269. https://doi.org/10.1002/ijc.32360

    Article  CAS  PubMed  Google Scholar 

  17. Mazzolini R, Gonzàlez N, Garcia-Garijo A et al (2018) Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 46:146–158. https://doi.org/10.1093/nar/gkx958

    Article  CAS  PubMed  Google Scholar 

  18. Dweep H, Gretz N (2015) MiRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697. https://doi.org/10.1038/nmeth.3485

    Article  CAS  PubMed  Google Scholar 

  19. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed Central  Google Scholar 

  20. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140. https://doi.org/10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carbon S, Ireland A, Mungall CJ, Shu ShengQiang, Marshall B, Lewis S, the AmiGO Hub, and the WPWG, (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289

    Article  CAS  Google Scholar 

  22. Karlseder J, Broccoli D, Yumin D et al (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 80(283):1321–1325. https://doi.org/10.1126/science.283.5406.1321

    Article  Google Scholar 

  23. Sidler C, Kovalchuk O, Kovalchuk I (2017) Epigenetic regulation of cellular senescence and aging. Front, Genet, p 8

    Google Scholar 

  24. Jeon HY, Kim JK, Ham SW et al (2016) Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumor Biol 37:5857–5867. https://doi.org/10.1007/s13277-015-4439-2

    Article  CAS  Google Scholar 

  25. Zhang W, Feng Y, Guo Q et al (2019) SIRT1 modulates cell cycle progression by regulating CHK2 acetylation−phosphorylation. Cell Death Differ. https://doi.org/10.1038/s41418-019-0369-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmeer K, Wengerodt, et al (2019) Dissecting aging and senescence—current concepts and open lessons. Cells 8:1446. https://doi.org/10.3390/cells8111446

    Article  CAS  PubMed Central  Google Scholar 

  27. Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through sry-related HMG-box factors. Cell Stem Cell 5:504–514. https://doi.org/10.1016/j.stem.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Wang Z, Tang X et al (2017) Molecular mechanisms and potential prognostic effects of REST and REST4 in glioma (Review). Mol Med Rep 16:3707–3712

    Article  CAS  Google Scholar 

  29. Zhang P, Pazin MJ, Schwartz CM et al (2008) Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 18:1489–1494. https://doi.org/10.1016/j.cub.2008.08.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagoner MP, Gunsalus KTW, Schoenike B et al (2010) The transcription factor REST is lost in aggressive breast cancer. PLoS Genet 6:1–12. https://doi.org/10.1371/journal.pgen.1000979

    Article  CAS  Google Scholar 

  31. Pallini R, Sorrentino A, Pierconti F et al (2006) Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int J cancer 118:2158–2167. https://doi.org/10.1002/ijc.21613

    Article  CAS  PubMed  Google Scholar 

  32. Lavanya C, Venkataswamy MM, Sibin MK et al (2018) Down regulation of human telomerase reverse transcriptase (hTERT) expression by BIBR1532 in human glioblastoma LN18 cells. Cytotechnology 70:1143–1154. https://doi.org/10.1007/s10616-018-0205-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santambrogio F, Gandellini P, Cimino-Reale G et al (2014) MicroRNA-dependent regulation of telomere maintenance mechanisms: a field as much unexplored as potentially promising. Curr Pharm Des 20:6404–6421. https://doi.org/10.2174/1381612820666140630095918

    Article  CAS  PubMed  Google Scholar 

  34. Dinami R, Ercolani C, Petti E et al (2014) miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74:4145–4156. https://doi.org/10.1158/0008-5472.CAN-13-2038

    Article  CAS  PubMed  Google Scholar 

  35. Luo Z, Feng X, Wang H et al (2015) Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression. Aging Cell 14:391–399. https://doi.org/10.1111/acel.12304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang YY, Sun G, Luo H et al (2012) Mir-21 modulates htert through a stat3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther 18:722–728. https://doi.org/10.1111/j.1755-5949.2012.00349.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naderlinger E, Holzmann K (2017) Epigenetic regulation of telomere maintenance for therapeutic interventions in gliomas. Genes (Basel) 8(5):145. https://doi.org/10.3390/genes8050145

    Article  CAS  PubMed Central  Google Scholar 

  38. El-Badawy A, Ghoneim NI, Nasr MA et al (2018) Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 7(7):bio034181. https://doi.org/10.1242/bio.034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamal MM, Sathyan P, Singh SK et al (2012) REST regulates oncogenic properties of glioblastoma stem cells. Stem Cells 30:405–414. https://doi.org/10.1002/stem.1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang J, Meng Q, Zhao W et al (2016) An expression based REST signature predicts patient survival and therapeutic response for glioblastoma multiforme. Sci Rep 6:34556. https://doi.org/10.1038/srep34556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu X, Tao Y, Gao X et al (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009. https://doi.org/10.1038/celldisc.2016.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takai H, Smogorzewska A, De Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556. https://doi.org/10.1016/S0960-9822(03)00542-6

    Article  CAS  PubMed  Google Scholar 

  43. Tutton S, Lieberman PM (2017) A role for p53 in telomere protection. Mol Cell, Oncol, p 4

    Google Scholar 

  44. Suchánková J, Legartová S, Ručková E et al (2017) Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after γ-irradiation that depleted MDC1 protein in specific TP53 mutants. Histochem Cell Biol 148:239–255. https://doi.org/10.1007/s00418-017-1567-3

    Article  CAS  PubMed  Google Scholar 

  45. Moureau S, Luessing J, Harte EC et al (2016) A role for the p53 tumour suppressor in regulating the balance between homologous recombination and non-homologous end joining. Open Biol 6(9):160225. https://doi.org/10.1098/rsob.160225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hasegawa D, Okabe S, Okamoto K et al (2016) G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem Biophys Res Commun 471:75–81. https://doi.org/10.1016/j.bbrc.2016.01.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 80(318):798–801. https://doi.org/10.1126/science.1147182

    Article  CAS  Google Scholar 

  48. Chawla R, Azzalin CM (2009) The telomeric transcriptome and SMG proteins at the crossroads. Cytogenet Genome Res 122:194–201

    Article  Google Scholar 

  49. Sampl S, Pramhas S, Stern C et al (2012) Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol 5:56–65. https://doi.org/10.1593/tlo.11202

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brumbaugh KM, Otterness DM, Geisen C et al (2004) The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell 14:585–598. https://doi.org/10.1016/j.molcel.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  51. Chen J, Crutchley J, Zhang D et al (2017) Identification of a DNA damage–induced alternative splicing pathway that regulates p53 and cellular senescence markers. Cancer Discov 7:766–781. https://doi.org/10.1158/2159-8290.CD-16-0908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhardwaj A, Yang Y, Ueberheide B, Smith S (2017) Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat Commun 8(1):2214. https://doi.org/10.1038/s41467-017-02363-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagy Z, Kalousi A, Furst A et al (2016) Tankyrases promote homologous recombination and check point activation in response to DSBs. PLoS Genet 12(2):e1005791. https://doi.org/10.1371/journal.pgen.1005791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RK is thankful to the IIT Delhi internal grant for funding this study. OSV thanks the Ministry of Human Resource and Development (MHRD), Govt. of India for Senior Research Fellowship and European Molecular Biology Organization (EMBO) for a Short-Term Fellowship. The authors also thank Miguel Jiménez for help with cell culture and the CNIO histopathology and confocal microscopy cores.

Funding

IIT Delhi Internal Research Grant, Senior Research Fellowship, EMBO Short term fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RK and MAB conceived the project. RK supervised the whole study. MAB hosted OSV for an EMBO fellowship and supervised the study pertaining to telomere research at CNIO, Spain. OSV and RK designed the experiments. OSV performed all the experiments. DK assisted in preparation of luciferase assay constructs. KW mentored OSV in performing experiments pertaining to telomere research at CNIO, Spain. RK and OSV wrote the manuscript. KW and MAB reviewed the manuscript.

Corresponding author

Correspondence to Ritu Kulshreshtha.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinchure, O.S., Whittemore, K., Kushwah, D. et al. miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell. Mol. Life Sci. 78, 2299–2314 (2021). https://doi.org/10.1007/s00018-020-03644-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03644-2

Keywords

Navigation